Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Тимчасові ряди. Виявлення загальної тенденції

Тимчасовий ряд – це послідовність спостережень Уt, Уt2…Уtn, кожне з яких відноситься до деякого відрізку часу t1, t2,….tn, або визначає результати за деякий період часу.

Як прямі приклади тимчасових рядів можна вказати щомісячну, щоквартальну, щорічну собівартість перевезення пасажирів, обсяг пасажирів, що перевозяться по депо, або рівнянню в цілому. Як вже вказувалося вище, вихідні дані слід формувати по кожному з об'єктів у зв'язку з тим, що інформація буде більш достовірною ніж по групі об'єктів.

Маючи в розпорядженні свій тимчасовий ряд для досліджуваного показника і для всіх чинників, необхідно перш за все виявити загальну тенденцію зміни цих величин (тренд, еволюційну складову, лінію рівняння).

Тренд – це рівняння У=d(t), що виражає в середньому зміну в часі показника, заданого рядом динаміки. Таке рівняння можна розглядати як апроксимацію тимчасового ряду або як окремий випадок регресії.

Як показує дослідження економічних тимчасових рядів, в них завжди міститься загальна тенденція, яку необхідно виявити. Управління У=d(t) можна відшукувати безпосередньо за звітними або дослідженими даними, по К-членним ковзаним середнім.

Використання ковзаних середніх доцільно в разі достатньо довгого ряду. Число членів ковзаної середньої повинне бути обумовлено міркуваннями по суті процесу і залежне від кроку тимчасового ряду. Так, якщо дані про розміри показника не ділові, то інтерес представляє чотиричленна ковзана середня, вирівнююча характер процесу в межах місяця, у разі місячних даних – доцільно тричленне вирівнювання, що згладжує результати в межах кварталу.

При згладжуванні за допомогою ковзаних середніх доводиться втрачати частину даних: при тричленному вирівнюванні – дві сторони таблиці, при чотирьох- і п'яти членному вирівнюванні - відповідно три і чотири рядки. Якщо число даних не вірне, то таке скорочення даних навряд чи буде доцільним.

Питання про доцільну довжину тимчасового ряду досить складне. З одного боку, як і завжди при відшукуванні апроксимуючої формули або рівняння регресії, виникає природне прагнення до збільшення масиву спостережень з метою підвищення точності надійності результатів, з другого боку, при обробці тимчасових рядів слід врахувати небажаність використання старих даних. Приймати ці суперечливі вимоги можна тільки за рахунок зменшення довжини інтервалів тимчасового ряду – скорочуючи крок ряду (шляхом переходу, наприклад від квартальних даних до місячних, від місячних до тижневих, і т.п. якщо такі дані за матеріалами звітності можна мати).

Приклад. Дані собівартості пасажироперевезень міським електричним транспортом, представлені в табл.. 4.1, вирівняти за ковзаною середньою і побудувати графік.

Таблиця 4.2 - Стратегічні дані собівартості пасажироперевезень по депо

t Собі- вартість С, коп   Трич-лен ні суми Тричлен- ні ковзані середні Чотири-член- ні суми Чотири-членні ковзані середні П’яті-член- ні суми П’яти-член- ні ковзані середні
  65,9 - - - - - -
  66,9 201,3 67,3 269,4 67,3 - -
  69,1 203,5 67,8 271,7 67,9 338,2 67,6
  67,5 204,8 68,2 274,7 68,6 339,3 6,8
  68,2 205,6 68,5 276,5 69,1 345,6 69,1
  69,9 209,0 69,5 281,8 70,4 349,3 69,7
  70,9 213,6 71,2 285,7 71,4 358,5 71,7
  72,8 215,8 71,9 288,5 72,1 361,4 72,2
  72,1 217,7 72,5 290,5 72,6 363,7 72,7
  72,8 217,7 72,5 290,9 72,7 365,7 72,9
  72,8 278,8 72,9 - - - -
  73,1 - - - - - -

Як бачимо, усереднені дані більш наочно виражають основну тенденцію собівартості перевезення пасажирів. Вихідні дані, що різно ковзають, подані на рис. 4.1.

 

Рис. 4.1 - Вихідні дані, різні ковзані і вирівнююча парабола:

1- вихідні дані; 2- тричленні ковзані; 3- чотиричленні ковзані; 4- п’ятичленні середні; 5- вирівнююча парабола.

При визначенні загальної тенденції виникає два завдання: вибір форми рівняння, тобто вид функції d(t); обчислення параметрів рівняння.

При виборі форми управління випливає, як в статистичному регресійному аналізі, добре знати процес по суті. Так, для короткострокового прогнозування багато механіко– економічних показників найкращою формою тренда є показова, що описує зростання за законом складних процесів, для більш тривалого періоду прогнозування по цілому ряду показників - експонента з насиченням. Якщо ж сутність процесу не вимагає певної форми управління, то вибір проводиться за якнайменшою залишковою дисперсією. Графічна ілюстрація тимчасового ряду також допоможе в цьому виборі.

Практика показує, що доцільно піддавати випробуванню залишкову дисперсію по чотирьох монотонних функціях:

1. Лінійної

;

 

2. Степінної

 

3. Експоненціальної

 

4. Експоненти з насиченням

При цьому відхилення від тренду визначаються відповідно у вигляді:

(4.2)

Всі параметри α знаходять за методом якнайменших квадратів, що приводить до системи нормальних рівнянь

(4.3)

(4.4)

(4.5)

(4.6)

Знайшовши для відповідної залежності, знаходять функцію, яка в порівнянні з іншими найкраще апроксимує початковий часовий ряд.

Використання з метою апроксимації багатопараметричних функцій недоцільне. Хоч за допомогою таких функцій можна отримати добре наближення вихідним даним, але, таким чином математично описується не стільки загальна тенденція, скільки випадкові від неї відхилення; з'являються невиправдані особливості процесу - максимуми і мінімуми. Крім того, складання таких функцій і їх застосування для практичних розрахунків різко ускладнюється.

Приклад. Для вищеперерахованих даних, використовуючи степінну залежність , розраховуємо її параметри і робимо прогноз на найближчий період. Для визначення параметрів рівняння розрахунки зводимо в табл. 4.2

 

 

Таблиця 4.2 - Розрахунок статистичних характеристик рівняння.

  Yt ln t ln t2 ln Yt ln Yt ln t Yt ε ε2
  65,9 0,00 0,00 1,8189 0,00 1,8035 63,6 2,3 5,29
  66,9 0,3010 0,0906 1,8254 0,5494 1,8211 66,24 0,66 0,44
  69,1 0,4771 0,2276 1,8395 0,8774 1,8314 67,32 1,28 1,64
  67,5 0,6021 0,3625 1,8293 1,1014 1,8387 68,98 -1,48 2,19
  68,2 0,6990 0,4886 1,8331 1,2813 1,8443 69,88 -1,68 2,82
  69,9 0,7782 0,6056 1,8445 1,4354 1,8490 70,13 0,73 0,53
  70,9 0,8451 0,7142 1,8505 1,5639 1,8524 71,19 -0,29 0,08
  72,9 0,9031 0,8156 1,8627 1,6822 1,8566 71,88 1,02 1,04
  72,1 0,9542 0,9109 1,8579 1,7728 1,8593 72,33 -0,23 0,05
  72,8 1,000 1,00 1,8621 1,8626 1,8620 72,88 -0,08 0,00
  72,8 1,0414 1,0845 1,8621 1,9392 1,8644 73,16 -0,36 0,13
  73,2 1,0792 1,1647 1,8645 2,0122 1,8666 73,52 -0,32 0,12
  8,6824 7,4648 22,1506 16,0959       14,32
                     

Система нормальних рівнянь має видгляд:

(4.7)

Підставивши відповідні значення з табл.. 4.2, отримаємо

(4.8)

Вирішивши систему рівнянь, одержимо:

α=0,0585, lna=1,8035.

Маємо рівняння:

(4.9)

Прогноз на 13 і 14 періоди складе: Y13=72,83; Ym=73,02.

Середній квартал відхилення вихідних значень від розрахункових (дисперсія)

(4.10)

а середні квадратичні відхилення що в порівнянні з середнім розміром складає

Проте зазначимо, похибки апроксимації особливо великі на кінцях базисного періоду, що обумовлюють велику помилку прогнозу. Можна сказати, що залежність підібрана невдало.

Якщо протягом базисного періоду процес, що вивчається, суттєво змінився в результаті появи нових чинників (сезонні коливання), то для апроксимації тимчасового ряду слід скористатися двома або більш окремими аналітичними виразами, розглядаючи їх як частини науково – безперервної функції. При цьому прогнозування проводиться за останньою дугою і необхідно уточнити, який допустимий інтервал прогнозування. Факт істотності змін для показника слід встановлювати як якісно, так і статистично.

Можна скористатися і графічним способом: побудувавши три тренди по кожному періоду в цілому по всьому ряду, порівняти графічно, на скільки близько загальний тренд огинає обидва приватних.

Статистична перевірка може бути здійснений наступним прикладом дисперсійного аналізу. Нехай значення показника до і після деякого моменту задані рядами:

11, 12...1h1; (4.11)

21, 22...2h1. (4.12)

з середніми значеннями і дисперсіями, визначуваними по формулах

; (4.13)

Обчислюємо загальну середня і загальну дисперсію з'єднаного ряду

; . (4.14)

Розчленовувавши повну дисперсію ряду на частини, одержуємо

(4.15)

Враховуючи число ступенів свободи кожної з сум в рівнянні, позначаємо

; . (4.16)

Відношення порівнюємо з відповідним значенням розподілу Фішера. Якщо < F5% [1, n-2] при рівні значущості 5% вважаємо періоди, що вивчаються, не істотно різними у значенні даного показника . Якщо < F5% [1, n-2] при рівні значущості 1% вважаємо періоди, що вивчаються, суттєво різними за показником і будуємо тренд з двох частин, різних тільки за параметрами або видом функції d(t).

Приклад. Методику обробки рядів динаміки за наявності сезонних коливань можна проілюструвати на прикладі собівартості пасажироперевезень одним з тролейбусних рівнянь за період 1998-2003рр. Виявлення загальної тенденції на підставі даних табл. 4.3 починаємо з побудови графіка.

Таблиця 4.3 - Динаміка статистичних показників

Роки   t Значення показника, С, коп. Квартал
      I II III IV
    58,71 62,3 56,88 59,34 56,72
    60,13 62,78 58,35 60,84 58,78
    60,83 63,47 57,88 62,58 59,4
    65,70 69,52 63,02 63,89 66,51
    66,08 67,23 62,99 65,65 67,54
    66,76 68,59 60,56 66,00 68,29
               

 


 


Рис. 4.2 – Динаміка собівартості пасажироперевезень

В цьому прикладі (рис. 4.2) спостерігається різкий перелом характеру змін в 2000 р. Тому неможливо підібрати єдину математичну функцію зростання, задовільно апроксимуючу дані про собівартість пасажироперевезень за всі роки. У зв'язку з цим розбиваємо тимчасовий діапазон на дві частини - 1998-2001 рр. і 2001-2003 рр. Для першого ряду підбираємо експоненту, для другого - експоненту з насиченням. При визначенні параметрів рівнянь використовуємо розрахунки, зведені відповідно в табл. 4.4. і 4.5.

Таблиця 4.4 - Розрахунок параметрів експоненти

Роки Y ny t V= ℓny-1,78 Vt t2 ny=1,78+ ε ε2 β%
  58,71 1,7761   -0,0039     -0,013 1,7787 60,08 -1,37 1,88 2,28
  60,13 1,7791   -0,0004 -0,004   0,0021 1,7821 60,53 -0,4 0,16 0,66
  60,83 1,7841   0,0041 0,0082   0,0155 1,7955 62,44 -1,61 2,59 2,57
  65,70 1,8176   0,0376 0,1182   0,0289 1,8089 64,40 1,3 1,69 2,01
      0,0374 0,1206           6,32  

 

Таблиця 4.5 - Розрахунок параметрів експоненти з насиченням

Роки Y ny t t1=t-2 V= ℓny-1,82 ny= 1,82+ ε ε 2 β%
  65,7 1,8176     -0,0024   -0,024   -0,0084 1,8116 64,8 0,9 0,81 1,388
  65,08 1,82     0,000 0,50 0,00 0,250 0,0033 1,8233 66,58 -0,5 0,25 0,75
  66,76 1,8245     0,0045 0,333 0,0015 0,111 0,0072 1,8272 67,16 -0,4 0,16 0,59
        0,0021 1,833 -0,0009 1,361         1,22  

 

Системи нормальних рівнянь

; . (4.17)

Звідки

na =-0,0113, a= 0,0134; ℓna1 =0,015, а1= -0,0234;

V = -0,0113+0,0134 t; V1=0,015 - .

Тоді одержуємо

n t = 1,7687 + 0,0134 t; ℓn t = 1,835 - ;

=58,70,0134 t 0 ≤ t ≤ 3; t 3≤ t ≤ 5

max β% = 2,58; max β% = 1,388.

Апроксимація цілком задовільна.

Для 2001 р. приймаємо значення собівартості

= 64,60.

Прогноз на 2004 р. При t=6

nу = 1,835 - = 1,829, = 67,49.

Проте через сезонні коливання прогнозування за сумарними річними даними є абсолютно недостатнім. Тому необхідно прогнозувати за окремими періодами, в даному прикладі за вихідними квартальними даними.

4.3. Авторегресійні моделі прогнозування

Методика прогнозування цінна в тому випадку, якщо вона спирається на обґрунтовану теорію, що встановлює правомочність прогнозування за допомогою даної моделі і помилки вірогідності прогнозу. Оцінка такої помилки за допомогою функції зростання неможлива, тому особливий інтерес представляють авторегресійні моделі.

Авторегресією називається рівняння, що визначає змінну Хj у момент t (або t-й період) через її значення в попередні періоди: (t-1) (t-2)... (t-к). Лінійне авторегресійне рівняння записуємо у вигляді

Хt = а1 Хt-1 + а2 Хt-2 + + ак Хt-к. (4.18)

Першим етапом дослідження тимчасового ряду змінної Х є виділення загальної тенденції у вигляді функції d(t) і визначення залишків εt у формі εt = Хt - d(t) чи εt = d(хt).

Якщо залишки εt незалежні, тобто не можуть бути представлені як функція часу, то функція d(t) охоплює повністю еволюційну складову змінної Хt. При цьому залишається знайти закон їх розподілу εt і, прийнявши гіпотезу про збереження цього закону розподілу на прогнозований період, побудувати довірчий інтервал для прогнозованої величини Хt за функцією d(t). Якщо ж залишки εt залежні, тобто містять деяку тенденцію, то її можна виявити за допомогою коефіцієнта автокореляції. Проводячи зсув значень εt на один рядок і останнє значення переміщаємо на перше місце, одержуємо табл. 4.6.

 

Таблиця 4.6 – Залишки змінних ряду динаміки

εt εt-1
ε1 εn
ε2 ε1
ε3 ε2
………… …………..
εn εn-1

 

Обчислюємо циклічний коефіцієнт кореляції між рядами εt і εt-1 за формулою

r(εt, εt-1) = . (4.19)

Ця формула (4.19) виходить із звичайної формули для визначення коефіцієнта кореляції, якщо покласти

∑ εt = ∑ εt-1 = 0; (4.20)

∑ (εt -1)2 = ∑ (εt)2 . (4.21)

Формула (4.20) виходить з того, що параметри функції d(t) визначаються за методом якнайменших квадратів, а формула (4.21) - з циклічної табл. 4.6.

Аналогічно, зсовуючи εt на 2,3….К рядків, одержуємо циклічну таблицю послідовних відхилень

Таблиця 4.7 - Циклічна таблиця послідовних відхилень

t εt εt-1 εt-2 ……… εt-к+1 εt-к
  ε1 εn εn-1   εn-k+2 εn-k+1
  ε2 ε1 εn   εn-k+3 εn-k+2
  ε3 ε2 ε1   εn-k+4 εn-k+3
…. …. …. …. ….   ….
К εk εk-1 εk-2   ε1 εn
К+1 εk+1 εk εk-1   ε2 ε1
К+2 εk+2 εk+1 εk   ε3 ε2
….. ….. …. …. …. …. ….
n εn εn-1 εn-2   εn-k+1 εn-k

За даними табл. 4.7 визначаємо всі циклічні коефіцієнти автокореляції:

r(εxt εxt-j) = , i, j = 1,2,…..K; (4.22)

r(εxt-1 εxt-j) = . (4.23)

Циклічний коефіцієнт автокореляції не підпорядковується нормальному закону розподілу, його розподіл асиметричний, суттєві величини коефіцієнтів автокореляції при певному рівні значущості різні для позитивних і негативних його значень. 5% - й і 1% - й рівні значущості коефіцієнтів автокореляції подані в спеціальних таблицях. Знайдені значення r1, r2… rn-к-1 перевіряємо по таблиці 5% - х і 1% - х рівнів вірогідності коефіцієнтів автокореляції. Якщо | rстат. (n) | < | r5%. (n) |, то приймаємо гіпотезу неавтокорельованості залишків εt; якщо | rстат. (n) | > | r1%. (n) | відкидаємо гіпотезу їх неавтокорельованості.

За циклічними коефіцієнтами автокореляції складаємо матрицю і її обертаємо. Як і в разі звичайної регресії багаточинника, перевіряємо наявність мультиколінеарності кожного з чинників εxt-j, j=1,2-k від сукупності інших і зберігаємо тільки лінійно незалежні аргументи.

Будуємо лінійну авторегресійну модель

εt = а1 εt-1 + а1 εt-2 + ….+ ак εt-к, (4.24)

що виражає εt в період t за допомогою значень εt-j, j = 1,2…К за К попередніх періодів. При цьому в рівнянні повинні бути збережені тільки суттєві і лінійно незалежні коефіцієнти.

Якщо виявляються аj – коефіцієнти, що не задовольняють вказаним вимогам, то модель потребує перерахунку (починаючи з розрахунку автокореляційної матриці більш низького порядку).

Оскільки параметри рівняння тренда визначали за методом найменших квадратів, то в разі його коректного підбору відповідні відхилення підкоряються нормальному розподілу, і, отже, рівняння регресії можна відшукувати в лінійній формі

n Xt = a1n Xt-1 + a2n Xt-2 +…….+akn Xt-k + F(t); (4.25)

Xt = a1 Xt-1 + a2n Xt-2 +……..+ an Xt-k + F(t). (4.26)

Яким повинне бути число членів рівняння, це питання слід вирішувати в поєднанні професійних вимог процесу, що по суті вивчається, з математико-статистичними критеріями. Так, якщо статистичний ряд містить тижневі дані, то особливий інтерес являє чотиричленна модель залежності рівня показника від тижневих рівнів за весь попередній місяць. У разі місячних даних цікава тричленна авторегресія, а для даних, зібраних по роках, – п’ятичленна.

Статистичні критерії покликані встановити відсутність автокорельованості залишків від віднімання з табличних значень εt їх розрахункових значень

ηt = εt – (a1 εt-1 + a2 εt-2 +…+ ak εt-2k). (4.27)

Існує декілька статистичних критеріїв. Один з них заснований на порівнянні середнього квадрата послідовних різниць ηt:

. (4.28)

З дисперсією величини

(4.29)

 

Складаємо відношення середнього квадрата послідовних різниць, до середнього квадрата самих величин:

К = . (4.30)

Якщо Кстат., потрапляє в допустиму область при рівні значущості 5%, а саме К5% (n-k) < Кстат (n-k) < К15% (n-k), то приймаємо гіпотезу неавтокорельованості залишків ηt, а, отже, і достатності числа членів К авторегресійної моделі.

Якщо ж Кстат (n-k) < К% (n-k) або Кстат > К1% (n-k), то відкидаємо гіпотезу неавтокорельованості залишків ηt і рахуємо число членів рівняння недостатності. У цьому випадку число членів рівняння треба збільшити, якщо довжина ряду дозволяє це.

Користуючись для прогнозу розробленими рівняннями, можна знайти довірчий інтервал для значення прогнозованого показника.

Якщо прогнозований показник рівний, то розмір показника Хt записуємо у вигляді

- ≤ Xt ≤ + . (4.31)

Викладена методика складання авторегресійних моделей, використані критерії і побудований довірчий інтервал можна застосовувати тільки для великих вибірок, коли довжина ряду n не менше 30.

Помилка прогнозу по отриманих рівняннях визначається за дисперсії εt. Оскільки

- Хt = εt, (4.32)

то Βер = | εt| ≤ tα σε= Pα, (4.33)

де Pα – задана вірогідність, Pα = 1-α, а tα - відповідна межа по С (n-k) ступеням свободи Стьюдента:

σε = . (4.34)

Розглянемо приклади складання авторегресійних моделей.

Одночленна модель. Щомісячний пробіг рухомого складу міського електротранспорту на 1000 пасажирів, що перевозяться, заданий рядом в графі 2 табл. 4.8. Наявність експоненціального ряду (див. рис. 4.3.) дозволяє розраховувати на придатність одночленної моделі = а1Хt-1.

Система нормальних рівнянь для визначення параметра а1 має вигляд

= а1 . (4.35)

З табл. 4.3. (графи 4 і 5) виходить 367673,4 = 364278,2 а1

Звідки а1 = = 1,0087 ≈ 1,01.

 

Одержуємо рівняння = 1,01 Хt-1. Обчислюємо значення = 1,01 Хt-1 (графа 6) і знаходимо значення εt = Xtt-1 (графа 7) ∑ εt = 9,4, що несуттєво в порівнянні з розмірами Xt.

Обчислюємо коефіцієнт циклічної автокореляції r1. За графами 9 і 10 отримаємо

r1 = r(εt, εt-1) = (4.36)

З табл. 4.3 знаходимо n1 = 15-1=14, r<0, r5% = -0,479.

Оскільки | r1| < | r5%|, кореляція εt, εt-1 несуттєва.

Аналогічно за графами 12 і 10 (табл. 4.8.) одержуємо r2 = = 0,416, що свідчить про несуттєвість кореляції εt и εt-2.

У даному випадку переважний критерій Дж. Неймана. Обчислюємо різницю εt t-1 за графами 13 і (εt t-1)2 – за графами 14. Одержуємо

K= (4.37)

За табл. 4.3 для n1 = 14 рівень значущості К5% рівний 1,2725 при r > 0 і 3,0352 у разі r < 0. Розрахунки свідчать, що коли в генеральній сукупності автокореляція між залишками εt відсутня, то в 95% вибірок буде К > 1,272 у випадку r > 0 и К < 3,0352 при <.

У даному прикладі значення К потрапляє в допустиму область при 5% рівні значущості К > 1,2725. Отже, гіпотеза неавтокорельованості залишків εt стверджується і авторегресійне рівняння Xt = 1,01 Xt-1 приймається.

Помилка прогнозу при середньоквадратичному відхиленні

σε = . (4.38)

Складаємо

Вср = ≤ tα * = Pa. (4.39)

При 95%-й гарантійної вірогідності tα = 2,1 за табл. П.4[12] і помилка прогнозу не перевищить 14,42, що складає приблизно 8%:

- 14,42 ≤ 1,01 Xt-1 + 14,42 (4.40)


Рис. 4.3 - Одночленна авторегресійна модель:

1-вихідні дані; 2-одночленна авторегресія; 3-вирівнююча гіпербола.

Багаточленна модель. Щомісячна реалізація цегли (в тисячах штук) базою торгово – будівельних матеріалів за 20 місяців представлена в табл. 4.9 (графа 2). Треба скласти модель для прогнозування місячної потреби в цеглі на найближчі місяці.


 

<== предыдущая лекция | следующая лекция ==>
Прогнозна модель, її характеристики і план складання | Общие представления
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 653; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.