Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Принципы построения статистических группировок. 1. Выбор группировочного признака – признака, по которому производится разбиение совокупности на отдельные группы

1. Выбор группировочного признака – признака, по которому производится разбиение совокупности на отдельные группы. В качестве признака необходимо использовать существенные обоснованные признаки. Группировочный признак – это основание (свойство объекта) для разделения объектов на группы.

Признаки различаются:

· по форме выражения (атрибутивные и количественные);

· по характеру колебания (альтернативные «да», «нет»; множественные);

· по роли во взаимосвязи явлений (результативные – могут меняться в зависимости от ситуации и целей анализа; факторные – воздействующие на другие признаки).

2. Определение количества групп. Если в основание группировки положен атрибутивный признак, то количество групп будет столько, сколько существует градаций (уровней) данного признака. Если основание группировки – количественный признак, то при определении количества групп в каждом конкретном случае следует исходить не только из степени колеблемости признака, но и из особенностей объекта и цели исследования.

Если совокупность состоит из большого числа единиц и распределение единиц по группировочному признаку близко к нормальному, для определения количества групп (m) используют формулу Стерджесса:

m = 1+3,322·lg N, (2.1)

где N – численность единиц совокупности.

Таблица 2.4 - Номограмма по формуле Стерджесса

N 15¸24 25¸44 45¸89 90¸179 180¸359 360¸719 720¸1489
m              

 

 

3. Определение интервала группировки. Интервал – это значение варьирующего признака, лежащее в определенных границах.

Если вариация признака происходит в сравнительно узких границах и распределение носит равномерный характер, то строят группировку с равными интервалами:

, (2.2)

где h – величина интервала;

xmax, xmin – максимальное и минимальное значения группировочного признака в совокупности;

m – число групп.

 

Величина интервала округляется до ближайшего целого числа, или же кратного 10, 50, 100.

Возможны и другие варианты определения интервала группировки.

 

Интервалы могут быть двух видов:

· закрытыми, когда у интервала указаны обе границы;

· открытыми, когда у первого интервала указана верхняя граница, а у последнего – нижняя (например, в таблице 2.3, 1-я группа населения по размеру среднедушевого дохода – до 1000 руб.; последняя – 10000 и более).

 

Возможно построение вторичных группировок. Основные задачи, вторичной группировки:

· приведение данных к сопоставимым результатам;

· укрупнение интервалов;

· долевая перегруппировка (образование новых групп с меньшими интервалами).

<== предыдущая лекция | следующая лекция ==>
Сводка и группировка статистических данных | Пример 2.1
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 427; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.