Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Графическое отображение вариационных рядов

Вариационные ряды

При изучении совокупности интересующий нас признак у различных единиц совокупности принимает различные значения, т.е. он имеет некоторую вариацию.

Вариацией признака называется наличие различий в численных значениях признаков у отдельных единиц совокупности.

Чтобы выявить характер распределения единиц совокупности по варьирующим признакам, определить закономерности в этом распределении, строят ряды распределения единиц совокупностей по какому-либо варьирующему признаку.

Ряды распределения, построенные по количественному признаку называются вариационными.

При анализе вариационных рядов решают следующие задачи:

1) Определение меры вариации, т.е. количественное измерение степени колеблемости признака. Это позволяет сравнивать различные совокупности между собой по степени рассеяния и отслеживать уровень вариации признака одной и той же совокупности в различные периоды.

2) Исследование закономерностей вариации в статистических совокупностях для изучения причин, вызывающих вариацию.

Для описания статистических распределений обычно используются следующие виды характеристик (показателей):

1) средние величины;

2) характеристики вариации (рассеяния);

3) характеристики дифференциации и концентрации;

4) характеристики формы распределения.

Вариационный ряд по своей конструкции имеет 2 характеристики:

· значения варьирующего признака – варианты xi, i = 1,2,…, m;

· число случаев вариантов: абсолютные – частоты ni (fi), относительные – частости wi (относительные доли частот в общей сумме частот).

 

Тогда можно сказать, что вариационный ряд – это ранжированный (упорядоченный) в порядке возрастания или убывания ряд статистических частот (частостей).

Вариационные ряды по способу построения бывают дискретные и интервальные.

Дискретный вариационный ряд можно рассматривать как такое преобразование ранжированного ряда, при котором перечисляются отдельные значения признака и указывается их частота.

Если число вариантов велико или признак имеет непрерывную вариацию, то строится интервальный вариационный ряд, в котором отдельные варианты объединяются в интервалы (группы). Принципы построения групп рассмотрены в разделе 2.4.Существуют следующие виды графического отображения вариационных рядов (рис. 3.1, 3.2):

· полигон для отображения дискретных рядов, когда фиксируются значения (xi; ni, i = 1,2,…, m);

· гистограмма для отображения интервальных рядов (ki = х (i +1)хi,
ni (wi));

· кумулята (кумулятивный ряд) – кривая накопленных частот.

<== предыдущая лекция | следующая лекция ==>
Пример 2.1 | Пример 3.1
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 607; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.