Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Свойства дисперсии

1. Дисперсия постоянной величины равна нулю.

2. Если у всех значений вариантов отнять какое-то постоянное число А, то средний квадрат отклонений (дисперсия) от этого не изменится

. (2.14)

Это значит, что дисперсию можно вычислить не по заданным значениям признака, а по их отклонениям от какого-то постоянного числа, например условного нуля (см. формулу 2.13).

 

3. Если все значения вариантов разделить на какое-то постоянное число А, то дисперсия уменьшится в А 2 раз:

. (2.15)

 

4. Если распределение признака близко к нормальному или симметричному, то по правилу мажорантности (т.к. среднее квадратическое отклонение – средняя геометрическая величина, а среднее линейное отклонение – средняя арифметическая) среднее квадратическое отклонение больше среднего линейного отклонения (), причем

, . (2.16)

 

Размах вариации, среднее линейное и среднее квадратичное отклонение – это именованные величины. Единицей измерения у них и у исходных значений признака совпадают. Дисперсия может быть задана в ед.2 признака или в % отклонений.

 

<== предыдущая лекция | следующая лекция ==>
Показатели вариации | Вариация альтернативного признака. Альтернативные признаки– два противоположных, взаимоисключающих друг друга качественных признака, которыми одни единицы совокупности обладают (значение
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 275; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.