Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Моменты распределения Показатели формы распределения

Виды дисперсий в совокупности, разделенной на части. Правило сложения дисперсий

 

Если исходная совокупность является такой, что по значениям признака она делится на l групп, то общая дисперсия складывается из частных дисперсий. В таблице 2.2 представлен анализ такой совокупности.

Таблица 2.2 - Определение исходной совокупности по группам

Значение признака х Число единиц в j -й группе Итого
  j l
х 1 f 11 f 1 j f 1 l
хi fi 1 fij fil
хk fk 1 fkj fkl
Итого

Здесь j – номер группы ();

хii -е значение признака ();

fij – частота i -го значения признака, число единиц в j -й группе;

mi – сумма частот i -го значения признака в каждой группе;

nj – сумма частот всех значений признака в j -й группе;

N – сумма частот всех значений признака во всех группах (объем совокупности).

Сначала вычисляем l частных средних (), т.е. среднее значение признака в каждой группе:

. (2.22)

На основе частных средних определяем общую среднюю () по формулам

или . (2.23)

 

Общая дисперсия совокупности

. (2.24)

Общая дисперсия отражает вариацию признака за счет всех факторов, действующих в данной совокупности.

Вариацию между группами за счет признака-фактора, положенного в основу группировки, отражает межгрупповая дисперсия, которая исчисляется как средний квадрат отклонений групповой средней от общей средней:

. (2.25)

Межгрупповая дисперсия характеризует систематическую вариацию результативного признака, т.е. вариацию между группами за счет признака-фактора, положенного в основу группировки.

Вариацию внутри каждой группы изучаемой совокупности отражает внутригрупповая дисперсия, которая исчисляется как средний квадрат отклонений значений признака х от частной средней :

или . (2.26)

Для всей совокупности внутригрупповую вариацию будет выражать средняя из внутригрупповых дисперсий, которая рассчитывается как средняя арифметическая из внутригрупповых дисперсий:

. (2.27)

Внутригрупповая дисперсия отражает случайную вариацию, т.е. часть вариации обусловленную влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основу группировки.

Между представленными видами дисперсий существует определенное соотношение, которое известно как правило сложения дисперсий:

. (2.28)

Таким образом, общая дисперсия складывается из двух слагаемых: первое – средняя из внутригрупповых дисперсий – измеряет вариацию внутри частей совокупности, второе – межгрупповая дисперсия – вариацию между средними этих частей.

Правило сложения дисперсий позволяет выявить зависимость результатов от определяющих факторов с помощью соотношения межгрупповой и общей дисперсий. Это соотношение называется эмпирическим коэффициентом детерминации2) и показывает долю вариации результативного признака под влиянием факторного.

. (2.29)

Эмпирическое корреляционное отношение (η) показывает тесноту связи между исследуемым явлением и группировочным признаком.

. (2.30)

η2 и η [0, 1]. (2.31)

Если связь отсутствует, то h = 0. В этом случае межгрупповая дисперсия равна нулю (δ2=0), т.е. все групповые средние равны между собой и межгрупповой вариации нет. Это означает, что группировочный признак не влияет на вариацию исследуемого признака х.

Если связь функциональная, то h = 1. В этом случае дисперсия групповых средних равна общей дисперсии (). Это означает, что группировочный признак полностью определяет характер изменения изучаемого признака.

Чем больше значение корреляционного отношения приближается к единице, тем полнее (сильнее) корреляционная связь между признаками (таблица 2.3).

Таблица 2.3 - Качественная оценка связи между признаками (шкала Чэддока)

Значение Характер связи   Значение Характер связи
η = 0 Отсутствует   0,5 ≤ η < 0,7 Заметная
0 < η < 0,2 Очень слабая   0,7 ≤ η < 0,9 Сильная
0,2 ≤ η < 0,3 Слабая   0,9 ≤ η < 1 Весьма сильная
0,3 ≤ η < 0,5 Умеренная   η = 1 Функциональная

Пример 2.1.

Определим групповые дисперсии, среднюю из групповых дисперсий, межгрупповую дисперсию, общую дисперсию по данным о производи­тельности труда в двух бригадах:

Изготовлено деталей за час, шт. (производительность труда) Количество рабочих, имеющих соответствующую производительность труда
в бригаде 1 в бригаде 2
хi fi 1 fi 2
     
     
     
     
     
     

 

Промежуточные расчеты занесем в таблицы:

 

хi Бр. 1 Бр. 2 mi Промежуточные расчеты для определения средних величин
fi 1 fi 2 хi·fi 1 хi·fi 2 хi·mi
             
             
             
             
             
             
Σ n 1=10 n 2=10 N =20 Σ хi·fi 1=138 Σ хi·fi 2=178 Σ хi· mi =316

 

хi Промежуточные расчеты для определения дисперсий
(хi ) (хi ) (хi) (хi )2· fi 1 (хi )2· fi 2 (хi)2· mi
  -3,8 -7,8 -5,8 14,44 0,00 33,64
  -1,8 -5,8 -3,8 9,72 0,00 43,32
  0,2 -3,8 -1,8 0,12 14,44 12,96
  2,2 -1,8 0,2 9,68 9,72 0,20
  4,2 0,2 2,2 17,64 0,08 14,52
  6,2 2,2 4,2 0,00 19,36 70,56
Σ 51,60 43,60 175,20

 

Средняя производительность труда для 1-й бригады:

= 13,8 шт./ч.

Средняя производительность труда для 2-й бригады:

= 17,8 шт./ч.

Средняя производительность труда для 1-й и 2-й бригады:

= 15,8 шт./ч.

Дисперсия 1-й группы (бригады) = 5,16 Дисперсия 2-й группы (бригады) = 4,36
Средняя из групповых дисперсий = 4,76 Межгрупповая дисперсия = 4,0
Общая дисперсия =8,76
Проверка по правилу сложения дисперсий: = 4,76 + 4,00 = 8,76
     

 

Эмпирический коэффициент детерминации:

= 0,457 = 45,7%.

Отсюда можно сделать вывод, что общая вариация производительности труда на 45,7% обусловлена вариацией между группами.

Эмпирическое корреляционное отношение

= 0,6757.

Значение h = 0,6757 показывает заметную связь по шкале Чэддока (см. таблицу 2.3) между исследуемым явлением (производительностью труда) и группировочным признаком (бригады).


<== предыдущая лекция | следующая лекция ==>
Вариация альтернативного признака. Альтернативные признаки– два противоположных, взаимоисключающих друг друга качественных признака, которыми одни единицы совокупности обладают (значение | Моменты распределения
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 389; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.