КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Ряды динамики
Пример По данным о стоимости основных производственных фондов (СОПФ) и объеме валовой продукции (ВП) определить линейное уравнение связи.
; . Уравнение регрессии имеет вид: . Следовательно, с увеличением стоимости основных фондов на 1 млн.руб. объем валовой продукции увеличивается в среднем на 5,6 млн. руб. Проверим значимость полученных коэффициентов регрессии. Рассчитаем и : для параметра а 0: для параметра а 1: . По таблице Стьюдента с учетом уровня значимости =5% и числа степеней свободы ν =10-1-1=8 получаем =2,306. Фактические значения и превышают табличное критическое значение . Это позволяет признать вычисленные коэффициенты корреляции типичными. Пример По данным предыдущего примера оценить тесноту связи между признаками, оценить значимость найденного коэффициента корреляции. , или . Значение коэффициента корреляции свидетельствует о сильной прямой связи между рассматриваемыми признаками. Значение t расч превышает найденное по таблице значение =2.306, что позволяет сделать вывод о значимости рассчитанного коэффициента корреляции.
Пример Имеются некоторые данные о среднегодовой стоимости ОПФ (СОПФ), уровне затрат на реализацию продукции (ЗРП) и стоимости реализованной продукции (РП). Считая зависимость между этими показателями линейной, определить уравнение связи; вычислить множественный и частные коэффициенты корреляции, оценить значимость модели.
Решение. Составим систему нормальных уравнений МНК: Выразим из 1-го уравнения системы a 0 = 29,4 – 6,6· a 1 – 9· a 2. Подставив во 2-е уравнение это выражение, получим: . Далее подставляем в 3-е уравнение вместо a 0 и a 1 полученные выражения и решаем его относительно a 2 с точностью не менее 3-х знаков после запятой. Итак: a 0 = 12,508; a 1 = 2,672; a 2 = – 0,082; = 12,508 + 2,672· х 1 – 0,082· х 2. = = 0,884; = = 0,777; = = 0,893; =0,893. Проверим значимость r (α = 0,01 и ν = 7): = 5,00; = 3,27. =5,00 > t табл=3,50 – коэффициент корреляции x 1 значим; =3,27 < t табл=3,50 – коэффициент корреляции x 2 не значим. Произведенные расчеты подтверждают условие включения факторных признаков в регрессионную модель – между результативным и факторными признаками существует тесная связь (= 0,884; = 0,777), однако между факторными признаками достаточно существенная связь (= 0,893). Включение в модель фактора x 2 незначительно увеличивает коэффициент корреляции (= 0,884; =0,893), поэтому включение в модель фактора x 2 нецелесообразно. Вычислим стандартизованные коэффициенты уравнения множественной регрессии:
Отсюда вычислим частные коэффициенты детерминации:
т.е. вариация результативного признака объясняется главным образом вариацией фактора x1. Вычислим частные коэффициенты эластичности:
Проверим адекватность модели на основе критерия Фишера: Найдем значение табличного значения F-критерия для уровня значимости α=0,05 и числе степеней свободы ν1 = 2, ν2 = 10 –2 – 1: Fтабл=4,74. Превышение значения Fрасч над значением Fтабл позволяет считать коэффициент множественной детерминации значимым, а соответственно и модель – адекватной, а выбор формы связи - правильным.
Дата добавления: 2014-01-04; Просмотров: 328; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |