Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Упругие силы. Закон Гука

Упругими называются силы, возникающие при упругих деформациях тел.

Рассмотрим зависимость деформации металлического стержня или струны от величины внешней растягивающей силы F (рис. 3.10). Удлинение стержня будет зависеть не только от величины приложенной силы, но и от его начальной длины — l 0, поэтому в качестве объективной характеристики деформации тела принимается его относительное удлинение:

. (3.16)

Относительное удлинение будет одинаковым как для разных участков стержня, так и для всего стержня в целом. Эта величина будет зависеть теперь только от приложенной силы.

Рис. 3.10

Считается, что растягивающая сила равномерно распределена по поверхности любого поперечного сечения стержня S. Отношение называется напряжением. Напряжение измеряется в и численно равно силе, действующей на поверхности единичной площади. На графике (рис. 3.11) представлена зависимость относительной деформации e от напряжения s.

 

Рис. 3.11

Вначале с увеличением растягивающего усилия F деформация стержня растёт пропорционально напряжению (до точки П на графике). При дальнейшем увеличении нагрузки пропорциональность нарушается, стержень удлиняется при почти неизменной нагрузке. Эта область — за точкой Т диаграммы называется областью текучести. Здесь происходят пластические, необратимые деформации, которые не исчезнут бесследно после снятия нагрузки. Дополнительное увеличение нагрузки приводит к разрыву стержня (т.Р).

Упругие силы возникают при деформациях стержня только в пределах области пропорциональности. Здесь напряжение пропорционально относительной деформации

s = Е ´ e (3.17)

Эта важная зависимость была установлена в 1660 году английским учёным и изобретателем Робертом Гуком. Коэффициент пропорциональности Е в законе Гука — модуль Юнга — является одной из характеристик материала.

Отметим, что всё сказанное справедливо, конечно, и для случая сжатия стержня.

Перепишем закон Гука в таком виде

,

F = k ´ D l, (3.18)

где: — коэффициент упругости.

В этой форме закон Гука записывают и для случая упругой деформации пружин

Е = к × х, (3.19)

здесь: х — деформация пружины,

F — приложенная внешняя сила (рис. 3.12).

 

X

Рис. 3.12

Если рассмотреть малый элемент пружины D х, то окажется, что он находится в равновесии потому, что кроме внешней силы на него действует равная по величине и противоположная по направлению упругая сила

F упр = – F = –к × х

Упругая сила, возникающая при деформации тела, прямо пропорциональна величине деформации х тела. Знак минус означает, что упругая сила направлена всегда к положению равновесия.

<== предыдущая лекция | следующая лекция ==>
Вязкое трение | Пример применения законов Ньютона
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 281; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.