Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Пусть заданы векторы в прямоугольной системе координат

Как было сказано выше, матричный метод и метод Крамера применимы только к тем системам линейных уравнений, в которых число неизвестных равняется числу уравнений. Далее рассмотрим произвольные системы линейных уравнений.

 

Определение. Система m уравнений с n неизвестными в общем виде записывается следующим образом:

,

где aij – коэффициенты, а bi – постоянные. Решениями системы являются n чисел, которые при подстановке в систему превращают каждое ее уравнение в тождество.

 

Определение. Если система имеет хотя бы одно решение, то она называется совместной. Если система не имеет ни одного решения, то она называется несовместной.

 

Определение. Система называется определенной, если она имеет только одно решение и неопределенной, если более одного.

 

Определение. Для системы линейных уравнений матрица

 

А = называется матрицей системы, а матрица

 

А*= называется расширенной матрицей системы

 

 

Определение. Если b1, b2, …,bm = 0, то система называется однородной. однородная система всегда совместна, т.к. всегда имеет нулевое решение.

 

Элементарные преобразования систем.

К элементарным преобразованиям относятся:

 

1)Прибавление к обеим частям одного уравнения соответствующих частей другого, умноженных на одно и то же число, не равное нулю.

2)Перестановка уравнений местами.

3)Удаление из системы уравнений, являющихся тождествами для всех х.

 

Теорема Кронекера – Капелли.

(условие совместности системы)

(Леопольд Кронекер (1823-1891) немецкий математик)

 

Теорема: Система совместна (имеет хотя бы одно решение) тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы.

RgA = RgA*.

 

Очевидно, что система (1) может быть записана в виде:

x1+ x2 + … + xn

 

 

Доказательство.

1) Если решение существует, то столбец свободных членов есть линейная комбинация столбцов матрицы А, а значит добавление этого столбца в матрицу, т.е. переход А®А* не изменяют ранга.

 

2) Если RgA = RgA*, то это означает, что они имеют один и тот же базисный минор. Столбец свободных членов – линейная комбинация столбцов базисного минора, те верна запись, приведенная выше.

 

Пример. Определить совместность системы линейных уравнений:

 

A =

 

~ . RgA = 2.

A* = RgA* = 3.

Система несовместна.

 

Пример. Определить совместность системы линейных уравнений.

 

А = ; = 2 + 12 = 14 ¹ 0; RgA = 2;

 

A* =

 

RgA* = 2.

Система совместна. Решения: x1 = 1; x2 =1/2.

 

 

Метод Гаусса.

(Карл Фридрих Гаусс (1777-1855) немецкий математик)

 

В отличие от матричного метода и метода Крамера, метод Гаусса может быть применен к системам линейных уравнений с произвольным числом уравнений и неизвестных. Суть метода заключается в последовательном исключении неизвестных.

Рассмотрим систему линейных уравнений:

 

 

Разделим обе части 1–го уравнения на a11 ¹ 0, затем:

1) умножим на а21 и вычтем из второго уравнения

2) умножим на а31 и вычтем из третьего уравнения

и т.д.

 

 

Получим:

, где d1j = a1j/a11, j = 2, 3, …, n+1.

dij = aij – ai1d1j i = 2, 3, …, n; j = 2, 3, …, n+1.

 

Далее повторяем эти же действия для второго уравнения системы, потом – для третьего и т.д.

 

Пример. Решить систему линейных уравнений методом Гаусса.

 

Составим расширенную матрицу системы.

 

А* =

 

Таким образом, исходная система может быть представлена в виде:

 

, откуда получаем: x3 = 2; x2 = 5; x1 = 1.

 

Пример. Решить систему методом Гаусса.

 

Составим расширенную матрицу системы.

 

Таким образом, исходная система может быть представлена в виде:

 

, откуда получаем: z = 3; y = 2; x = 1.

Полученный ответ совпадает с ответом, полученным для данной системы методом Крамера и матричным методом.

 

Для самостоятельного решения:

Ответ: {1, 2, 3, 4}.

 

 

Элементы векторной алгебры.

 

Определение. Вектором называется направленный отрезок (упорядоченная пара точек). К векторам относится также и нулевой вектор, начало и конец которого совпадают.

 

Определение. Длиной (модулем) вектора называется расстояние между началом и концом вектора.

Определение. Векторы называются коллинеарными, если они расположены на одной или параллельных прямых. Нулевой вектор коллинеарен любому вектору.

 

Определение. Векторы называются компланарными, если существует плоскость, которой они параллельны.

Коллинеарные векторы всегда компланарны, но не все компланарные векторы коллинеарны.

 

Определение. Векторы называются равными, если они коллинеарны, одинаково направлены и имеют одинаковые модули.

 

Всякие векторы можно привести к общему началу, т.е. построить векторы, соответственно равные данным и имеющие общее начало. Из определения равенства векторов следует, что любой вектор имеет бесконечно много векторов, равных ему.

 

Определение. Линейными операциями над векторами называется сложение и умножение на число.

Суммой векторов является вектор -

Произведение - , при этом коллинеарен .

Вектор сонаправлен с вектором (­­), если a > 0.

Вектор противоположно направлен с вектором (­¯), если a < 0.

 

 

Свойства векторов.

 

1) + = + - коммутативность.

2) + (+ ) = (+ )+

3) + =

4) +(-1) =

5) (a×b)= a(b) – ассоциативность

6) (a+b)= a+ b- дистрибутивность

7) a(+ ) = a+ a

8) 1×=

 

Определение.

1) Базисом в пространстве называются любые 3 некомпланарных вектора, взятые в определенном порядке.

2) Базисом на плоскости называются любые 2 неколлинеарные векторы, взятые в определенном порядке.

3) Базисом на прямой называется любой ненулевой вектор.

 

Определение. Если - базис в пространстве и , то числа a, b и g - называются компонентами или координатами вектора в этом базисе.

 

В связи с этим можно записать следующие свойства:

 

- равные векторы имеют одинаковые координаты,

 

- при умножении вектора на число его компоненты тоже умножаются на это число,

 

= .

 

- при сложении векторов складываются их соответствующие компоненты.

 

; ;

+ = .

Линейная зависимость векторов.

 

Определение. Векторы называются линейно зависимыми, если существует такая линейная комбинация , при не равных нулю одновременно ai, т.е. .

Если же только при ai = 0 выполняется , то векторы называются линейно независимыми.

 

Свойство 1. Если среди векторов есть нулевой вектор, то эти векторы линейно зависимы.

 

Свойство 2. Если к системе линейно зависимых векторов добавить один или несколько векторов, то полученная система тоже будет линейно зависима.

 

Свойство 3. Система векторов линейно зависима тогда и только тогда, когда один из векторов раскладывается в линейную комбинацию остальных векторов.

 

Свойство 4. Любые 2 коллинеарных вектора линейно зависимы и, наоборот, любые 2 линейно зависимые векторы коллинеарны.

 

Свойство 5. Любые 3 компланарных вектора линейно зависимы и, наоборот, любые 3 линейно зависимые векторы компланарны.

 

Свойство 6. Любые 4 вектора линейно зависимы.

 

 

Система координат.

 

Для определения положения произвольной точки могут использоваться различные системы координат. Положение произвольной точки в какой- либо системе координат должно однозначно определяться. Понятие системы координат представляет собой совокупность точки начала отсчета (начала координат) и некоторого базиса. Как на плоскости, так и в пространстве возможно задание самых разнообразных систем координат. Выбор системы координат зависит от характера поставленной геометрической, физической или технической задачи. Рассмотрим некоторые наиболее часто применяемые на практике системы координат.

Декартова система координат.

 

Зафиксируем в пространстве точку О и рассмотрим произвольную точку М.

Вектор назовем радиус- вектором точки М. Если в пространстве задать некоторый базис, то точке М можно сопоставить некоторую тройку чисел – компоненты ее радиус- вектора.

 

Определение. Декартовой системой координат в пространстве называется совокупность точки и базиса. Точка называется началом координат. Прямые, проходящие через начало координат называются осями координат.

1-я ось – ось абсцисс

2-я ось – ось ординат

3-я ось – ось апликат

Чтобы найти компоненты вектора нужно из координат его конца вычесть координаты начала.

Если заданы точки А(x1, y1, z1), B(x2, y2, z2), то = (x2 – x1, y2 – y1, z2 – z1).

 

Определение. Базис называется ортонормированным, если его векторы попарно ортогональны и равны единице.

 

Определение. Декартова система координат, базис которой ортонормирован называется декартовой прямоугольной системой координат.

 

Пример. Даны векторы(1; 2; 3), (-1; 0; 3), (2; 1; -1) и (3; 2; 2) в некотором базисе. Показать, что векторы , и образуют базис и найти координаты вектора в этом базисе.

Векторы образуют базис, если они линейно независимы, другими словами, если уравнения, входящие в систему:

линейно независимы.

Тогда .

Это условие выполняется, если определитель матрицы системы отличен от нуля.

Для решения этой системы воспользуемся методом Крамера.

 

D1 =

;

D2 =

 

D3 =

Итого, координаты вектора в базисе , , : { -1/4, 7/4, 5/2}.

 

 

Длина вектора в координатах определяется как расстояние между точками начала и конца вектора. Если заданы две точки в пространстве А(х1, y1, z1), B(x2, y2, z2), то .

 

Если точка М(х, у, z) делит отрезок АВ в соотношении l/m, считая от А, то координаты этой точки определяются как:

 

В частном случае координаты середины отрезка находятся как:

 

x = (x1 + x2)/2; y = (y1 + y2)/2; z = (z1 + z2)/2.

 

 

Линейные операции над векторами в координатах.

 

тогда линейные операции над ними в координатах имеют вид:

 

 

 

Скалярное произведение векторов.

 

Определение. Скалярным произведением векторов и называется число, равное произведению длин этих сторон на косинус угла между ними.

×= ïïïïcosj

 

 

Свойства скалярного произведения:

 

1) ×= ïï2;

2) ×= 0, если ^или = 0 или = 0.

3) ×= ×;

4) ×(+) = ×+ ×;

5) (m= ×(m) = m(×); m=const

 

Если рассматривать векторы в декартовой прямоугольной системе координат, то

×= xa xb + ya yb + za zb;

 

 

Используя полученные равенства, получаем формулу для вычисления угла между векторами:

 

;

 

Пример. Найти (5+ 3)(2- ), если

10×- 5×+ 6×- 3×= 10,

т.к. .

 

Пример. Найти угол между векторами и , если

.

Т.е. = (1, 2, 3), = (6, 4, -2)

×= 6 + 8 – 6 = 8:

.

cosj =

 

Пример. Найти скалярное произведение (3- 2)×(5- 6), если

15×- 18×- 10×+ 12×= 15

+ 12×36 = 240 – 336 + 432 = 672 – 336 = 336.

 

Пример. Найти угол между векторами и , если

.

Т.е. = (3, 4, 5), = (4, 5, -3)

×= 12 + 20 - 15 =17:

.

cosj =

 

Пример. При каком m векторы и перпендикулярны.

 

= (m, 1, 0); = (3, -3, -4)

.

 

Пример. Найти скалярное произведение векторов и , если

()() =

 

= 10 +

 

+ 27 + 51 + 135 + 72 + 252 = 547.

 

 

Векторное произведение векторов.

 

Определение. Векторным произведением векторов и называется вектор , удовлетворяющий следующим условиям:

1) , где j - угол между векторами и ,

2) вектор ортогонален векторам и

3) , и образуют правую тройку векторов.

Обозначается: или.

 

 

 
 

 


j

 

Свойства векторного произведения векторов:

 

1) ;

2) , если ïïили = 0 или = 0;

3) (m= ´(m) = m(´);

4) ´(+ ) = ´+ ´ ;

5) Если заданы векторы (xa, ya, za) и (xb, yb, zb) в декартовой прямоугольной системе координат с единичными векторами , то

 

 

´=

 

6) Геометрическим смыслом векторного произведения векторов является площадь параллелограмма, построенного на векторах и .

 

 

Пример. Найти векторное произведение векторов и

.

= (2, 5, 1); = (1, 2, -3)

.

 

 

Пример. Вычислить площадь треугольника с вершинами А(2, 2, 2), В(4, 0, 3),

С(0, 1, 0).

(ед2).

 

Пример. Доказать, что векторы , и компланарны.

, т.к. векторы линейно зависимы, то они компланарны.

 

Пример. Найти площадь параллелограмма, построенного на векторах , если

(ед2).

 

Смешанное произведение векторов.

 

Определение. Смешанным произведением векторов , и называется число, равное скалярному произведению вектора на вектор, равный векторному произведению векторов и .

Обозначается или (, ,).

Смешанное произведение по модулю равно объему параллелепипеда, построенного на векторах , и .

 

 

 

 

 

 

Свойствасмешанного произведения:

 

1)Смешанное произведение равно нулю, если:

а) хоть один из векторов равен нулю;

б) два из векторов коллинеарны;

в) векторы компланарны.

2)

3)

4)

5) Объем треугольной пирамиды, образованной векторами , и , равен

6)Если , , то

 

 

 

Пример. Доказать, что точки А(5; 7; 2), B(3; 1; -1), C(9; 4; -4), D(1; 5; 0) лежат в одной плоскости.

Найдем координаты векторов:

Найдем смешанное произведение полученных векторов:

,

Таким образом, полученные выше векторы компланарны, следовательно точки A, B, C и D лежат в одной плоскости.

 

Пример. Найти объем пирамиды и длину высоты, опущенной на грань BCD, если вершины имеют координаты A(0; 0; 1), B(2; 3; 5), C(6; 2; 3), D(3; 7; 2).

 

Найдем координаты векторов:

Объем пирамиды

Для нахождения длины высоты пирамиды найдем сначала площадь основания BCD.

Sосн = (ед2)

Т.к. V = ; (ед)

 

Уравнение поверхности в пространстве.

 

Определение. Любое уравнение, связывающее координаты x, y, z любой точки поверхности является уравнением этой поверхности.

 

Общее уравнение плоскости.

Определение. Плоскостью называется поверхность, все точки которой удовлетворяют общему уравнению:

Ax + By + Cz + D = 0,

 

где А, В, С – координаты вектора -вектор нормали к плоскости.

 

Возможны следующие частные случаи:

 

А = 0 – плоскость параллельна оси Ох

В = 0 – плоскость параллельна оси Оу

С = 0 – плоскость параллельна оси Оz

D = 0 – плоскость проходит через начало координат

А = В = 0 – плоскость параллельна плоскости хОу

А = С = 0 – плоскость параллельна плоскости хОz

В = С = 0 – плоскость параллельна плоскости yOz

А = D = 0 – плоскость проходит через ось Ох

В = D = 0 – плоскость проходит через ось Оу

С = D = 0 – плоскость проходит через ось Oz

А = В = D = 0 – плоскость совпадает с плоскостью хОу

А = С = D = 0 – плоскость совпадает с плоскостью xOz

В = С = D = 0 – плоскость совпадает с плоскостью yOz

 

 

Уравнение плоскости, проходящей через три точки.

 

<== предыдущая лекция | следующая лекция ==>
Определение. Матрицы, полученные в результате элементарного преобразования, называются эквивалентными | Для того, чтобы через три какие- либо точки пространства можно было провести единственную плоскость, необходимо, чтобы эти точки не лежали на одной прямой
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 426; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.