Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Линейные однородные дифференциальные уравнения с

произвольными коэффициентами.

 

Рассмотрим уравнение вида

 

Определение. Выражение называется линейным дифференциальным оператором.

Линейный дифференциальный оператор обладает следующими свойствами:

 

1)

2)

 

Решения линейного однородного уравнения обладают следующими свойствами:

 

1) Если функция у1 является решением уравнения, то функция Су1, где С – постоянное число, также является его решением.

2) Если функции у1 и у2 являются решениями уравнения, то у12 также является его решением.

 

Структура общего решения.

 

Определение. Фундаментальной системой решений линейного однородного дифференциального уравнения n –го порядка на интервале (a, b) называется всякая система n линейно независимых на этом интервале решений уравнения.

 

Определение. Если из функций yi составить определитель n – го порядка

,

то этот определитель называется определителем Вронского.

(Юзеф Вроньский (1776 – 1853) – польский математик и философ - мистик)

 

Теорема. Если функции линейно зависимы, то составленный для них определитель Вронского равен нулю.

 

Теорема. Если функции линейно независимы, то составленный для них определитель Вронского не равен нулю ни в одной точке рассматриваемого интервала.

 

Теорема. Для того, чтобы система решений линейного однородного дифференциального уравнения была фундаментальной необходимо и достаточно, чтобы составленный для них определитель Вронского был не равен нулю.

Теорема. Если - фундаментальная система решений на интервале (a, b), то общее решение линейного однородного дифференциального уравнения является линейной комбинацией этих решений.

,

где Ci постоянные коэффициенты.

 

Применение приведенных выше свойств и теорем рассмотрим на примере линейных однородных дифференциальных уравнений второго порядка.

 

 

<== предыдущая лекция | следующая лекция ==>
Уравнения, не содержащие явно искомой функции | Общее решение линейного однородного дифференциального
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 205; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.