КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Производственная функция
Теория производства изучает зависимость между количеством используемых ресурсов и объемами выпускаемой продукции. В основе этой теории лежит концепция производственной функции. Производственная функция определяет максимальный объем выпуска продукции при каждом заданном количестве ресурсов. Эта функция описывает зависимость между затратами ресурсов и выпуском продукции, позволяя определить максимально возможный объем выпуска продукции при каждом заданном количестве ресурсов, или минимально возможное количество ресурсов для обеспечения заданного объема выпуска продукции. Производственная функция суммирует только технологически эффективные приемы комбинирования ресурсов для обеспечения максимального выпуска продукции. Любое усовершенствование в технологии производства, способствующее росту производительности труда, обусловливает новую производственную функцию. Производственный процесс представляет собой способ соединения факторов производства с целью их превращения в конечные товары и услуги. Мы исходим из предположения, что главной целью фирмы является максимизация прибыли. Для того, чтобы быть конкурентоспособной, фирма должна применять такой производственный процесс, который наиболее эффективно использует имеющиеся ресурсы. Иначе говоря, для производства заданного объема продукции используется минимальное количество ресурсов. Это - главная составляющая любой функционирующей фирмы, максимизирующей прибыль. Производственные методы считаются технологически неэффективными, если для выпуска заданного объема продукции они используют больше ресурсов, чем другие методы, обеспечивающие те же объемы выпуска. Базисные пропорции производственной функции могут быть исследованы на примере простой двухфакторной системы: 2 вида ресурсов — 1 вид конечной продукции. Рассмотрим производственный процесс, при котором различные количества труда (L) и капитала (К) могут быть использованы для производства телевизоров (Q). Производственная функция для такой системы будет иметь следующий вид: Q=F (L,K) Данные, характеризующие нашу производственную функцию, представлены в таблице ниже:
Табл. Альтернативные способы производства продукции (телевизоры, шт.)
Из таблицы мы видим, что существуют определенные комбинации различных факторов для производства максимального объема конкретного вида продукции. Анализ таблицы позволяет сделать два важных вывода. Во-первых, производственная функция показывает максимальное количество товара, которое может быть произведено при различных сочетаниях факторов L и К. Например, сочетание 2 ед. труда и 3 ед. капитала обеспечивает выпуск 48 ед. продукции, 4 ед. труда в сочетании с 6 ед. капитала дает в результате 90 ед. продукции и т. д. Во-вторых, производственная функция показывает альтернативные возможности, при которых различные комбинации факторов обеспечивают один и тот же объем выпуска продукции. Например, объем выпуска продукции, равный 106 ед. (выделен жирным шрифтом), может быть получен при следующих сочетаниях факторов: 6 ед. труда и 6 ед. капитала; 8 ед. труда и 5 ед. капитала. При изучении производственной функции необходимо подробнее рассмотреть известные нам категории эффекта масштаба производства и отдачи от фактора. Масштаб производства задается производственной функцией. В нашем примере производственная функция выпуска телевизоров будет описана уравнением Q=F (L,K). Если фирма принимает решение об одновременном и пропорциональном изменении количества всех применяемых факторов, то налицо - изменение масштаба производства. Предположим, что фирма, имеющая первоначально объем выпуска продукции Q1 принимает решение об увеличении масштаба производства в n раз. В этом случае заданная производственная функция примет следующий вид: Q2 = F (nL, nK), где Q2- объем выпуска телевизоров после изменения масштаба производства. Взаимосвязь между изменением масштаба производства и соответствующим изменением в объеме выпуска продукции называется отдачей от масштаба. Отдачу от масштаба можно измерить путем сравнения процентного изменения в выпуске продукции с процентным изменением в количестве всех применяемых факторов. Принято различать постоянную, возрастающую и убывающую отдачу от масштаба. Постоянная отдача от масштаба. Если при пропорциональном увеличении количества факторов в n раз, объем производства тоже возрастет в n раз, то имеет место постоянная отдача от масштаба, т. е. Q2 = n Q1 (где Ql -первоначальный объем производства). Например, фирма столкнется с ситуацией постоянной отдачи от масштаба, если при пропорциональном удвоении количества всех ресурсов объем производства тоже удвоится. Возрастающая отдача от масштаба. В случае, когда пропорциональное увеличение количества всех применяемых факторов в n раз вызовет рост объема производства больше, чем в n раз, наблюдается возрастающая отдача от масштаба, т. е. Q2 > n Q1. Каковы источники возрастающей отдачи? Важнейшими из них являются специализации в рамках фирмы и используемая технология. Увеличение масштабов производства может позволить фирме нанимать специалистов в той или иной области производственной и сбытовой деятельности. Действительно, маленькая обувная фабрика или «кустарь-одиночка» по пошиву обуви вряд ли будут привлекать отдельного специалиста по дизайну продукции, рекламе, работе с персоналом и т. п. Разделение труда на крупной фабрике позволяют рабочим специализироваться на отдельных операциях (один клеит подошвы, другой изготавливает шнурки и т. п.) Крупная фирма может себе позволить такие расходы, которые, изменяя внутреннюю организацию производства, в итоге и приведут к более чем пропорциональному увеличению выпуска по сравнению с затратами. Технология же позволяет использовать крупные капиталоемкие производственные мощности, которые более производительны в расчете на единицу готовой продукции. Так, в мелком фермерском хозяйстве его владелец может позволить себе вместо одного холодильника установить два. Но мощный рефрижератор на крупной ферме окажется более производительным, так как в расчете на единицу замороженной продукции он окажется дешевле, чем два небольших и более дешевых холодильника мелкого фермера. Уменьшающаяся отдача от масштаба. Когда пропорциональное увеличение всех применяемых факторов в n раз вызывает рост объема производства меньше, чем в n раз, имеет место убывающая отдача от масштаба, т.е. Q2 < nQ1. Причинами уменьшающейся отдачи от масштаба чаще всего бывают растущие бюрократические, или иерархические издержки внутреннего управления разросшейся фирмы. Распоряжения «сверху-вниз» проходят через все большее количество инстанций, административные расходы возрастают в большей степени, нежели выпуск готовой продукции. В целом это ведет к снижению эффективности производства. Отдача от фактора показывает зависимость между объемом выпускаемой продукции и изменениями в количестве одного фактора при неизменном количестве другого. По мере наращивания одного переменного фактора начинает проявляться тенденция, известная как закон убывающей предельной производительности, или убывающей предельной доходности фактора производства, о чем и пойдет речь далее.
Дата добавления: 2014-01-04; Просмотров: 857; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |