КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Уравнение состояния идеального газа. Состояние некоторой массы газа определяется тремя термодинамическими параметрами: давлением , объемом и температурой
Состояние некоторой массы газа определяется тремя термодинамическими параметрами: давлением , объемом и температурой . Между этими параметрами существует определенная связь, называемая уравнением состояния, которое в общем виде задается выражением , где каждая переменная является функцией двух других. Французский физик и инженер Б. Клапейрон объединил законы Бойля-Мариотта, Гей-Люссака и Шарля, и вывел уравнение состояния идеального газа. Пусть некоторая масса газа занимает объем , имеет давление и находится при температуре. Эта же масса газа в другом состоянии характеризуется параметрами , , (рис. 4). Переход из состояния 1 в состояние 2 происходит в виде двух процессов: 1) изотермического (изотерма ), 2) изохорного (изохора ). Согласно законам Бойля- Мариотта и Шарля: , (12) . (13) Исключив из уравнений (12) - (13) , получим . Так как состояния 1 и 2 выбраны произвольно, то для данной массы газа величина остается постоянной, то есть . (14) Выражение (14) является уравнением Клапейрона. Здесь – газовая постоянная, различная для разных газов. Русский ученый Д.И. Менделеев объединил уравнение Клапейрона с законом Авогадро, отнеся уравнение (14) к одному молю, используя молярный объем . Согласно закону Авогадро, при одинаковых и моли всех газов занимают одинаковый молярный объем , поэтому газовая постоянная будет одинаковой для всех газов. Эта постоянная обозначается и называется молярной газовой постоянной, она равна . (15) Уравнению (16) удовлетворяет лишь идеальный газ, и оно является уравнением состояния идеального газа, или уравнением Клапейрона- Менделеева. От уравнения (16) для моля газа можно перейти к уравнению Клапейрона – Менделеева для произвольной массы газа. Если при некоторых заданных давлении и температуре один моль газа занимает молярный объем , то при тех же условиях масса газа займет объем , где – молярная масса газа. Уравнение Клапейрона – Менделеева для массы газа . (17) Часто используют другую форму уравнения состояния идеального газа, вводя постоянную Больцмана: . (18) Используя , запишем уравнение состояния идеального газа (16) в виде Таким образом, из уравнения (19) следует, что давление идеального газа при данной температуре прямо пропорционально концентрации его молекул (или плотности газа).
Дата добавления: 2014-01-04; Просмотров: 670; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |