КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Теорема о циркуляции магнитного поля. Магнитное напряжение
Циркуляцией магнитного поля вдоль замкнутого контура l называется интеграл:
, где - проекция вектора на направление касательной к линии контура в данной точке. Соответствующий интеграл для электрического поля в электростатике, как мы знаем, равен нулю, что отражает свойство потенциальности электростатического поля:
. Магнитное поле не является потенциальным, оно, как было показано выше, является соленоидальным. Поэтому следует ожидать, что циркуляция магнитного поля вдоль замкнутого контура в общем случае отлична от нуля. Чтобы найти ее величину, выполним сначала некоторые вспомогательные действия. Как известно, интеграл, взятый между двумя любыми точками 1 и 2 в электрическом поле, есть электрическое напряжение между этими точками: . По аналогии мы можем ввести понятие «магнитного напряжения», определив его как: . Вычислим магнитное напряжение между двумя точками 1 и 2, взятыми на силовой линии магнитного поля прямолинейного проводника с током (рис.10.3). Рис.10.3. К вычислению магнитного напряжения проводника с током.
Напряженность магнитного поля на расстоянии r от оси проводника определяется по формуле: . Тогда: ,
где - длина дуги окружности, вдоль которой производится интегрирование. При обходе по всей силовой линии (окружности) угол и, следовательно: . Мы видим, что при обходе по замкнутому контуру, охватывающему проводник с током, циркуляция магнитного поля оказывается отличной от нуля и численно равной силе тока, текущего в проводнике; также она не зависит от формы и размеров выбранного контура. Если контур, охватывающий проводник, не является плоским, то при перемещении вдоль контура радиальный отрезок, соединяющий проводник с текущей точкой контура, будет не только поворачиваться вокруг проводника, но и перемещаться вдоль него. Однако суммарный угол поворота проекции этого отрезка на плоскость, перпендикулярную току, все равно будет равен 2π, то есть результат останется тем же. В том случае, когда контур не охватывает проводник с током, радиальный отрезок при обходе контура будет поворачиваться сначала в одну сторону, а потом в другую. При этом суммарный угол поворота (с учетом знака направления обхода) будет равен нулю. В общем случае, если контур охватывает несколько проводников с током (рис.10.4),
Рис.10.4. К формулировке теоремы о циркуляции магнитного поля.
то обобщением полученного результата будет написание выражения, составляющего содержание теоремы о циркуляции магнитного поля:
,
где в правой части стоит алгебраическая сумма всех токов, охваченных данным контуром, причем ток считается положительным, если его направление связано с направлением обхода контура правилом правого винта и отрицательным, если ток имеет противоположное направление.
Дата добавления: 2014-01-04; Просмотров: 531; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |