КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Модель Курно
Модель Курно. Статистический анализ взаимоотношения двух фирм в условиях дуополии был предложен в 1838 г. французским экономистом Антуаном Огюстьеном Курно). Курно исходил из следующих предпосылок. Обе фирмы (А и Б) производят однородный товар. Им известна кривая рыночного спроса. Обе фирмы принимают решения о производстве одновременно, самостоятельно и независимо друг от друга. Каждая из фирм предполагает выпуск конкурента постоянным, продавцы не могут иметь точной информации о своих ошибках (действуют "с завязанными глазами"). При этом возможны различные варианты. Рис. 9.4. Оптимизация объема производства фирмы А в зависимости от объема производства фирмы Б
Допустим, одна из фирм (например, Б) принимает решение о приостановке производства. Тогда рыночный спрос полностью обеспечивается выпуском фирмы А. Ее кривая спроса полностью совпадает с кривой рыночного спроса D1 (0) (рис. 9.4). При выборе максимизирующего прибыль объема производства фирма А решит производить 120 единиц товара, так как именно при этих условиях сравняются предельный доход MR1 (O) и предельные издержки МС. Если теперь фирма Б будет производить 40 единиц, то фирма А отреагирует на это сдвигом кривой спроса до положения D1 (40), а ее производство сократится до 40 (именно в этом случае MR1 (40) = МС1). Соответственно, когда фирма Б производит 60 единиц, фирма А уменьшает свой выпуск до 20 единиц, а когда фирма Б расширит производство до 120 единиц, фирма А вообще остановит свое производство. Отмечая на графике (рис. 9.5), как меняется выпуск фирмы А в зависимости от изменения выпуска фирмой Б, мы получаем кривую реакции фирмы А — QА(QБ). Аналогичный анализ можно осуществить и в отношении фирмы Б, получив в результате еще одну кривую реакции — QБ(QА). Пересечение кривых реагирования этих двух фирм (точка Е) показывает равновесие Курно: каждая фирма правильно угадывает поведение конкурента и принимает оптимальное для себя решение, ни одна из фирм не имеет стимула изменять свой объем производства. Рис. 9.5. Равновесие Курно Модель равновесия Курно предполагает, что фирмы-дуополисты конкурируют друг с другом. Ситуация принципиально изменится, если дуополисты договорятся друг с другом и будут коллективно намечать объем производства. Рассмотрим этот случай, предполагая идентичность обеих фирм и линейную кривую спроса (рис. 9.4). Равновесие Курно достигается, когда Q1 = Q2 = 40, а суммарный выпуск составляет 80 единиц. Если фирмы договорятся максимизировать совокупную прибыль, чтобы затем разделить ее пополам, то множество возможных решений этой задачи будет ложиться на контрактную кривую. При этом суммарный выпуск Q1 + Q2 = 60. Сравнение показывает, что при равновесии Курно общий объем производства выше, чем при дуополистическом сговоре (40 > 30), но ниже, чем он был бы при конкурентном равновесии (40 < 60). Рис. 9.5. Равновесие Курно, договорное равновесие и конкурентное равновесие. Кроме модели Курно есть и иные интерпретации дуополии — модели Бертрана, Эджуорта и Штакельберга.
Дата добавления: 2014-01-04; Просмотров: 284; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |