КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Дифракция света
(Дифракция света. Принцип Гюйгенса-Френеля. Дифракция Френеля. Метод зон Френеля. Дифракция света на круглом отверстии. Границы применимости геометрической оптики. Зонная и фазовая пластинки Френеля. Дифракция Фраунгофера от щели. Дифракционная решетка и ее применение. Пространственная дифракционная решетка. Формула Вульфа-Брэггов. Угловая и линейная дисперсия. Разрешающая способность. Критерий Рэлея. Голография) Принцип Гюйгенса — Френеля Дифракцией называется огибание волнами препятствий, встречающихся на их пути, или в более широком смысле — любое отклонение распространения волн вблизи любых неоднородностей (препятствий) от законов геометрической оптики. Благодаря дифракции волны могут попадать в область геометрической тени, огибать препятствия, проникать через небольшие отверстия в экранах и т. д. Различают два вида дифракции: 1. Дифракция в непараллельных лучах (дифракция Френеля), когда на препятствие падает сферическая (или плоская) волна, а дифракционная картина наблюдается на экране, находящемся за ним на конечном расстоянии от препятствия. 2. Дифракция в параллельных лучах (дифракция Фраунгофера), когда на препятствие падает плоская волна, а дифракционное изображение источника света наблюдается на экране, расположенном в фокальной плоскости собирающей линзы, установленной на пути прошедшего за препятствие света. Явление дифракции объясняется с помощью принципа Гюйгенса, согласно которому каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн дает положение волнового фронта в следующий момент времени. Пусть плоская волна нормально падает на отверстие в непрозрачном экране (рис. 3-1). Согласно Гюйгенсу, каждая точка волнового фронта служит источником вторичных волн (в однородной изотропной среде они сферические). Построив огибающую вторичных волн видим, что волна огибает края отверстия, т. е. фронт волны заходит в область геометрической тени. Принцип Гюйгенса решает задачу о направлении распространения волнового фронта, но не затрагивает вопроса об амплитуде волн, распространяющихся по разным направлениям. Френель вложил в принцип Гюйгенса физический смысл, дополнив его идеей интерференции вторичных волн. Согласно принципу Гюйгенса - Френеля, световая волна, возбуждаемая каким-либо источником S, может быть представлена как результат суперпозиции когерентных вторичных волн, «излучаемых» фиктивными источниками. Такими источниками могут служить бесконечно малые элементы любой замкнутой поверхности, охватывающей источник S. В качестве этой поверхности выбирают одну из волновых поверхностей, поэтому все фиктивные источники действуют синфазно. Таким образом, волны, распространяющиеся от источника, являются результатом интерференции всех когерентных вторичных волн. Учет амплитуд и фаз вторичных волн позволяет в каждом конкретном случае найти амплитуду (интенсивность) результирующей волны в любой точке пространства, т. е. определить закономерности распространения света. 3.2. Метод зон Френеля Принцип Гюйгенса является чисто геометрическим способом построения волновых поверхностей. Он никак не связан с физической природой волн и применим как к упругим, так и к электромагнитным волнам в равной мере. Найдем в произвольной точке М амплитуду световой волны, распространяющейся в однородной среде из точечного источника S (рис. 3-2). Согласно принципу Гюйгенса — Френеля, заменим действие источника S действием воображаемых источников, расположенных на вспомогательной поверхности Ф, являющейся поверхностью фронта волны, идущей из источника S. Френель разбил волновую поверхность Ф на кольцевые зоны такого размера, чтобы расстояния от краев зоны до М отличались на l/2, т. е. Р1М- Р0М=Р2М- Р1М=Р3М- Р2М=...= l/2. Подобное разбиение фронта волны на зоны можно выполнить, проведя с центром в точке М сферы радиусами b+l/2, b+2l/2, b+3l/2, …. Так как колебания от соседних зон проходят до точки М расстояния, отличающиеся на l/2, то в точку М они приходят в противоположной фазе и при наложении будут взаимно ослаблять друг друга. Поэтому амплитуда результирующего светового колебания в точке М A=А1- А2+ А3- А4+..., (3.1) где А1, А2,... — амплитуды колебаний, возбуждаемых 1-й, 2-й,... зонами. Для оценки амплитуд колебаний найдем площади зон Френеля. Пусть внешняя граница m-й зоны выделяет на волновой поверхности сферический сегмент высоты hm (рис. 3-3). Если площадь этого сегмента sm, то площадь m-й зоны Френеля равна Dsm = sm - sm-1, где sm-1 — площадь сферического сегмента, выделяемого внешней границей (m-1)-й зоны. Из рисунка следует, что (3-2) Учитывая, что l<<а и l<<b, получим (3-3) Площадь сферического сегмента и площадь m-й зоны Френеля соответственно равны (3-4) Выражение (3-4) не зависит от номера зоны m; следовательно, при не слишком больших m площади зон Френеля одинаковы. Согласно предположению Френеля, действие отдельных зон в точке М тем меньше, чем больше угол jm (рис. 3-3) между нормалью n к поверхности зоны и направлением на М, т. е. действие зон постепенно убывает от центральной (около Р0) к периферическим (до нуля). Кроме того, интенсивность излучения в направлении точки М уменьшается с ростом номера зоны m и вследствие увеличения расстояния от зоны до точки М. Учитывая оба этих фактора, можем записать А1> А2> А3> А4 …. Общее число зон Френеля, умещающихся на полусфере, очень велико; например, при а=b=10 см и l = 0,5 мкм оно равно Так как число зон Френеля велико, то в качестве допустимого приближения можно считать, что амплитуда колебания Аm от некоторой m-й зоны Френеля равна среднему арифметическому от амплитуд примыкающих к ней зон, т. е. . (3-5) Тогда выражение (3-1) можно записать в виде . (3-6) так как выражения, стоящие в скобках, согласно (3-5), равны нулю, а оставшаяся часть от амплитуды последней зоны ±Аm/2 ничтожно мала. Таким образом, амплитуда, создаваемая в произвольной точке М сферической волновой поверхностью, равна половине амплитуды, создаваемой одной центральной зоной. Следовательно, действие всей волновой поверхности на точку М сводится к действию ее малого участка, меньшего центральной зоны. Если в выражении (3-2) положим, что высота сегмента hm<<а (при не слишком больших m), тогда Подставив сюда значение (3-3), найдем радиус внешней границы m-й зоны Френеля: (3-7) При a=b=10 см и l=0,5 мкм радиус центральной зоны r1= 0,158 мм. Следовательно, распространение света к точке М происходит так, будто световой поток распространяется внутри очень узкого канала вдоль SM, т. е. прямолинейно. Таким образом, принцип Гюйгенса — Френеля позволяет объяснить прямолинейное распространение света. Правомерность деления волнового фронта на зоны Френеля подтверждена экспериментально с использованием зонных пластинок — стеклянных пластинок, состоящих из прозрачных и непрозрачных концентрических колец, построенных по принципу расположения зон Френеля, т. е. с радиусами rm зон Френеля, определяемыми выражением (3-7) для заданных значений a, b и l (m = 0, 2, 4,... для прозрачных и m = 1, 3, 5,... для непрозрачных колец). Если поместить зонную пластинку на расстоянии а от точечного источника и на расстоянии b от точки наблюдения на линии, соединяющей эти две точки, то для света длиной волны l она перекроет четные зоны и оставит свободными нечетные начиная с центральной. Результирующая амплитуда A=А1+А3+А5+… должна быть больше, чем при полностью открытом фронте. На опыте зонная пластинка во много раз увеличивает интенсивность света в точке М, действуя подобно собирающей линзе. 3.3. Дифракция Френеля на круглом отверстии Сферическая волна, идущая из точечного источника S, встречает на своем пути экран с круглым отверстием. Дифракционная картина наблюдается на экране (Э) в точке В, лежащей на линии, соединяющей источник S с центром отверстия. Экран параллелен плоскости отверстия и находится от него на расстоянии b (рис. 3-4). Разобьем открытую часть волновой поверхности Ф на зоны Френеля. Вид дифракционной картины зависит от числа зон Френеля, укладывающихся в отверстии. Амплитуда результирующего колебания, возбуждаемого в точке В всеми зонами (см. (3-1) и (3-6)), , (3-8) где знак плюс соответствует нечетным m, а знак минус — четным. Если отверстие открывает нечетное число зон Френеля, то амплитуда в точке В будет больше, чем при свободном распространении волны, если четное, то амплитуда будет равна нулю. Если в отверстие укладывается одна зона Френеля, то в точке В амплитуда A=А1, т. е. вдвое больше, чем в отсутствие непрозрачного экрана с отверстием. Интенсивность света больше соответственно в четыре раза. Если в отверстии укладываются две зоны Френеля, то из-за интерференции их действия в точке В практически уничтожат друг друга. Таким образом, дифракционная картина от круглого отверстия вблизи точки S будет иметь вид чередующихся темных и светлых колец с центрами в точке В (если m четное, то в центре будет темное кольцо, если m нечетное — то светлое кольцо), а интенсивность максимумов убывает с расстоянием от центра картины. Если отверстие освещается белым светом, то кольца будут окрашены. Число зон Френеля, укладывающихся в отверстии, зависит от его диаметра. Если он большой, то Аm<<А1 и результирующая амплитуда А=А1/2, т.е. такая же, как и при полностью открытом волновом фронте. При этом дифракционной картины нет — свет распространяется, как и в отсутствие круглого отверстия, прямолинейно. 3.4. Дифракция Френеля на диске Сферическая волна, распространяющаяся от точечного источника S, встречает на своем пути диск. Дифракционную картину наблюдаем на экране (Э) в точке В, лежащей на линии, соединяющей S с центром диска. Закрытый диском участок фронта волны надо исключить из рассмотрения и зоны Френеля строить начиная с краев диска (рис. 3-5). Пусть диск закрывает m зон Френеля. Амплитуда результирующего колебания в точке В равна или А=Аm+1/2, так как выражения, стоящие в скобках, равны нулю. Следовательно, в точке В будет всегда наблюдаться интерференционный максимум (светлое пятно), соответствующий половине действия первой открытой зоны Френеля. Центральный максимум окружен концентрическими с ним темными и светлыми кольцами, а интенсивность максимумов убывает с расстоянием от центра картины. С увеличением радиуса диска первая открытая зона Френеля удаляется от точки В и увеличивается угол jm (см. рис. 3-3) между нормалью к поверхности этой зоны и направлением на точку В. В результате интенсивность центрального максимума с увеличением размеров диска уменьшается. При больших размерах диска за ним наблюдается тень, вблизи границ которой имеет место слабая дифракционная картина. В данном случае дифракцией света можно пренебречь и считать свет распространяющимся прямолинейно. Отметим, что дифракция на круглом отверстии и дифракция на диске впервые рассмотрены Френелем.
3.5. Дифракция Фраунгофера на одной щели Немецкий физик И. Фраунгофер (1787— 1826) рассмотрел дифракцию плоских световых волн, или дифракцию в параллельных лучах. Дифракция Фраунгофера наблюдается в том случае, когда источник света и точка наблюдения бесконечно удалены от препятствия, вызвавшего дифракцию. Для этого достаточно точечный источник света поместить в фокусе собирающей линзы, а дифракционную картину исследовать в фокальной плоскости второй собирающей линзы, установленной за препятствием. Рассмотрим дифракцию Фраунгофера от бесконечно длинной щели (для этого практически достаточно, чтобы длина щели была значительно больше ее ширины). Пусть плоская монохроматическая световая волна падает нормально плоскости узкой щели шириной MN = а (рис. 3-6, а). Оптическая разность хода между крайними лучами МС и ND, идущими от щели в произвольном направлении j, , где F — основание перпендикуляра, опущенного из точки М на луч ND. Разобьем часть волновой поверхности в плоскости щели MN на зоны Френеля в виде полос, параллельных ребру М щели. Ширина каждой зоны выбирается таким образом, чтобы разность хода от краев этих зон была равна l/2. На ширине щели тогда уместится зон. (3-8) Если свет на щель падает нормально, то плоскость щели совпадает с фронтом волны и все точки фронта в плоскости щели будут колебаться в одной фазе. Амплитуды вторичных волн в плоскости щели будут равны, т.к. выбранные зоны Френеля будут иметь равные площади и одинаковый наклон к направлению наблюдения. Как следует из (3-8), число зон Френеля, укладывающихся на ширине щели, зависит от угла j и определяет результат наложения всех вторичных волн. При интерференции колебания от каждой пары соседних зон взаимно погашают друг друга, следовательно, если число зон Френеля четное, т.е. , то (3-9) где m – натуральный ряд чисел, m = 1, 2, 3, …. Таким образом в точке В наблюдается дифракционный минимум (полная темнота) первого, второго, третьего и т.д. порядков. Если число зон Френеля нечетное, т.е. , то (3-10) где m – натуральный ряд чисел, m = 0, 1, 2, 3, … и наблюдается дифракционный максимум нулевого, первого, второго, третьего и т.д. порядков, соответствующий действию одной некомпенсированной зоны Френеля. В прямом направлении (j = 0) щель действует как одна зона Френеля, и свет распространяется с наибольшей интенсивностью, т. е. в точке В0 наблюдается центральный дифракционный максимум. Распределение интенсивности (дифракционный спектр), получаемое из-за дифракции, приведено на рис. 3-6, б. Положение дифракционных максимумов зависит от длины волны l, поэтому такой вид дифракционная картина имеет лишь для монохроматического света. При освещении щели белым светом центральный максимум имеет вид белой полоски; он общий для всех длин волн (при j = 0 разность хода равна нулю для всех l). Справа и слева от центрального видны максимумы первого, второго и других порядков, причем ближе к центру дифракционной картины располагается фиолетовый край спектра (т.к. длина волны фиолетового света меньше длины волны красного света и в соответствие с формулой (3-10) угол отклонения фиолетовых линий меньше угла отклонения линий красного цвета для конкретного порядка. 3.6. Дифракция Фраунгофера на дифракционной решетке Одномерная дифракционная решетка — система параллельных щелей равной ширины, лежащих в одной плоскости и разделенных равными по ширине непрозрачными промежутками. На рис. 3-7 для наглядности показаны только две соседние щели MN и CD. Ширина каждой щели а, а ширина непрозрачных участков между щелями b, величина d = a + b называется постоянной дифракционной решетки (периодом). Щели находятся друг от друга на одинаковых расстояниях поэтому разности хода лучей, идущих от соседних щелей, будут для данного направления j одинаковы в пределах всей дифракционной решетки: . (3-11) В точке В на экране в фокальной плоскости линзы соберутся лучи, которые до линзы были параллельны между собой и распространялись под углом j к направлению падающей волны. Колебание в точке В является результатом интерференции вторичных волн, проходящих от разных щелей. Для того, чтобы в точке В наблюдался интерференционный максимум, разность хода Δ между волнами, испущенными соседними щелями, должна быть равна целому числу длин волн (четному числу полуволн): (m=0, 1, 2, …). (3-12) При разности хода, равной нечетному числу полуволн, в точке В будет наблюдаться интерференционный минимум: (m=0, 1, 2, …). (3-13) При пропускании через решетку белого света все максимумы, кроме центрального (m = 0), разложатся в спектр, фиолетовая область которого будет обращена к центру дифракционной картины, красная — наружу. Это следует из формулы (3-12) в которой угол отклонения m – го максимума j ~ l. Это используется для исследования спектрального состава света (определения длин волн и интенсивностей всех монохроматических компонентов), т. е. дифракционная решетка может быть использована как спектральный прибор. Распределение энергии по спектрам разных порядков показывает, что значительная часть энергии сосредоточена в спектре нулевого порядка (рис. 3-6, б) и по мере перехода к высшим порядкам энергия быстро убывает. Спектральные приборы, снабженные такими дифракционными решетками, были бы мало светосильны. Устранить данный недостаток предложил английский физик Дж. У. Рэлей, а осуществил это предложение американский физик Р.У.Вуд. Было предложено ввести дополнительную разность хода в пределах каждого штриха решетки. С этой целью решетку гравируют так, что каждая борозда имеет определенный профиль, благодаря чему при отражении (или при прохождении) возникает добавочная разность хода от одного края борозды до другого (рис. 3-8). Подбирая профиль борозды, удается сконцентрировать энергию в спектре того или иного порядка, ослабляя остальные, в том числе и самый яркий спектр нулевого порядка. Решетки подобного типа позволили сделать дифракционные спектрографы инструментом, превосходящим по светосиле обычные призматические спектрографы. Решетки, изображенные на рис. 3-8, представляют собой фазовые решетки, отдельные элементы которых отличаются не различием в отражающей или пропускающей способности, влияющей на амплитуду волны, а своей способностью изменять фазу волны. В данном случае изменение фазы происходит вследствие геометрической формы пластинки, отражающей или пропускающей волну. Можно воздействовать на фазу волны за счет различия в показателе преломления пропускающего слоя при его неизменной толщине; такого рода фазовые решетки удается создавать, вызывая в прозрачном теле ультраакустическую волну. Фазовая отражательная решетка, использующая различие в изменении фазы при полном внутреннем отражении от серебра и стекла показана на рис. 3-9. Для этого на гипотенузную грань стеклянной 90-градусной поворотной призмы были нанесены полоски серебра, которые разделены полосками стекла без серебрения. При падении света со стороны стекла интенсивность света, отраженного от тех или иных полосок, практически одинакова (за счет полного внутреннего отражения), но возникает различие в фазах, которое и приводит к образованию дифракционной картины. Возможны, конечно, решетки амплитудно-фазовые, т.е. воздействующие одновременно как на фазу, так и на амплитуду. 3.7. Дифракция на пространственной решетке Дифракция света наблюдается не только на плоской одномерной решетке (штрихи нанесены перпендикулярно некоторой прямой линии), но и на двумерной решетке (штрихи нанесены во взаимно перпендикулярных направлениях в одной и той же плоскости). Большой интерес представляет также дифракция на пространственных (трехмерных) решетках — пространственных образованиях, в которых элементы структуры подобны по форме, имеют геометрически правильное и периодически повторяющееся расположение, а также постоянные (периоды) решеток, соизмеримые с длиной волны электромагнитного Для наблюдения дифракционной картины необходимо, чтобы постоянная решетки была того же порядка, что и длина волны падающего излучения. Кристаллы, являясь трехмерными пространственными решетками, имеют постоянную порядка 10-10 м и непригодны для наблюдения дифракции в видимом свете (l ~ 5 × 10-7 м). Немецкий физик М. Лауэ (1879—1960) пришёл к выводу, что в качестве естественных дифракционных решеток для рентгеновского излучения можно использовать кристаллы, поскольку расстояние между атомами в кристаллах одного порядка с длиной волны l рентгеновского излучения (»10-12 ¸10-8 м). Советский физик Г.В. Вульф и английские физики Г. и Л. Брэгг независимо друг от друга предложили простой метод расчета дифракции рентгеновского излучения от кристаллической решетки. Они предположили, что происходит дифракция рентгеновских лучей при их отражении от системы параллельных кристаллографических плоскостей отстоящих друг от друга на расстоянии d (плоскостей, в которых лежат атомы кристаллической решетки). Монохроматический пучок параллельных рентгеновских лучей (1,2) падает под углом скольжения (между направлением падающих лучей и кристаллографической плоскостью) и возбуждает атомы кристаллической решетки, которые становятся источниками когерентных вторичных волн 1' и 2', интерферирующих между собой, подобно вторичным волнам, от щелей дифракционной решетки (рис. 3-10). Дифракционные максимумы наблюдаются в направлениях, в которых все волны, отраженные атомными плоскостями, будут находиться в одинаковой фазе. Эти направления удовлетворяют формуле Вульфа — Брэггов (m=1, 2, 3,...), (3-14) т. е. при разности хода между двумя лучами, отраженными от соседних кристаллографических плоскостей, кратной целому числу длин волн l, наблюдается дифракционный максимум. Если рентгеновское излучение падает на кристалл под углами скольжения отличными от угла , который удовлетворяет соотношению (3-14), то дифракция не возникает. Формула Вульфа — Брэггов используется при решении двух задач: 1. Наблюдая дифракцию рентгеновских лучей известной длины волны на кристаллической структуре неизвестного строения и измеряя и m, можно найти межплоскостное расстояние (d), т. е. определить структуру вещества (рентгеноструктурный анализ кристаллов). 2. Наблюдая дифракцию рентгеновских лучей неизвестной длины волны на кристаллической структуре при известном d и измеряя и m, можно найти длину волны падающего рентгеновского излучения. Этот метод лежит в основе рентгеновской спектроскопии.
Дата добавления: 2014-01-04; Просмотров: 1942; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |