Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Плоскость и прямая в пространстве

Всякое уравнение первой степени относительно координат

(3.1)

задает плоскость, и наоборот: всякая плоскость может быть представлена уравнением (3.1), которое называется уравнением плоскости.

Вектор , ортогональный плоскости, называется нормальным вектором плоскости. В уравнении (3.1) коэффициенты A, B, C одновременно не равны 0.

Особые случаи уравнения (3.1):

1. ‑ плоскость проходит через начало координат.

2. ‑ плоскость параллельна оси Oz.

3. ‑ плоскость проходит через ось Oz.

4. ‑ плоскость параллельна плоскости Oyz.

Уравнения координатных плоскостей: .

Прямая в пространстве может быть задана:

1) как линия пересечения двух плоскостей,т.е. системой уравнений:

, ; (3.2)

2) двумя своими точками и , тогда прямая, через них проходящая, задается уравнениями:

; (3.3)

3) точкой , ей принадлежащей, и вектором , ей коллинеарным. Тогда прямая определяется уравнениями:

. (3.4)

Уравнения (3.4) называются каноническими уравнениями прямой.

Векторназывается направляющим вектором прямой.

Параметрические уравнения прямой получим, приравняв каждое из отношений (3.4) параметру :

, , (3.5)

Решая систему (3.2) как систему линейных уравнений относительно неизвестных x и y, приходим к уравнениям прямой в проекциях или к приведенным уравнениям прямой:

, . (3.6)

От уравнений (3.6) можно перейти к каноническим уравнениям, находя z из каждого уравнения и приравнивая полученные значения:

.

От общих уравнений (3.2) можно переходить к каноническим и другим способом, если найти какую-либо точку этой прямой и ее направляющий вектор , где и ‑ нормальные векторы заданных плоскостей. Если один из знаменателей m, n или р в уравнениях (3.4) окажется равным нулю, то числитель соответствующей дроби надо положить равным нулю, т.е. система равносильна системе ; такая прямая перпендикулярна к оси Ох.

Система равносильна системе , ; прямая параллельна оси Oz.

Пример 1.15. Cоставьте уравнение плоскости, зная, что точкаслужит основанием перпендикуляра, проведенного из начала координат к этой плоскости.

Решение. По условию задачи вектор является нормальным вектором плоскости, тогда ее уравнение можно записать в виде. Подставив координаты точки , принадлежащей плоскости, найдем D: . Итак, .

Пример 1.16. Составьте уравнение плоскости, проходящей через ось Оz и образующей с плоскостью угол 60о.

Решение. Плоскость, проходящая через ось Oz, задается уравнением , где А и В одновременно не обращаются в нуль. Пусть В не равно 0, . По формуле косинуса угла между двумя плоскостями

, где .

Решая квадратное уравнение , находим его корни , , откуда получаем две плоскости и .

Пример 1.17. Составьте канонические уравнения прямой: , .

Решение. Канонические уравнения прямой имеют вид:

где m, n, р - координаты направляющего вектора прямой, x1, y1, z1 - координаты какой-либо точки, принадлежащей прямой. Прямая задана как линия пересечения двух плоскостей. Чтобы найти точку, принадлежащую прямой, фиксируют одну из координат (проще всего положить, например, ) и полученную систему решают как систему линейных уравнений с двумя неизвестными. Итак, пусть , тогда , , откуда ,. Координаты точки , принадлежащей данной прямой, мы нашли: . Направляющий вектор прямой легко найти, зная нормальные векторы исходных плоскостей и. Тогда

.

Канонические уравнения прямой имеют вид: .

Пример 1.18. В пучке, определяемом плоскостями и , найти две перпендикулярные плоскости, одна из которых проходит через точку .

Решение. Уравнение пучка, определяемого данными плоскостями, имеет вид , где u и v не обращаются в нуль одновременно. Перепишем уравнение пучка следующим образом:

.

Для того, чтобы из пучка выделить плоскость, проходящую через точку М, подставим координаты точки М в уравнение пучка. Получим:

, или .

Тогда уравнение плоскости, содержащей M, найдем, подставив в уравнение пучка:

.

Т.к. (иначе , а это противоречит определению пучка), то имеем уравнение плоскости . Вторая плоскость, принадлежащая пучку, должна быть ей перпендикулярна. Запишем условие ортогональности плоскостей:

, или .

Значит, уравнение второй плоскости имеет вид:

или .


<== предыдущая лекция | следующая лекция ==>
Уравнения прямых и кривых на плоскости. Уравнения кривых в большом количестве встречаются при чтении экономической литературы | 
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 505; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.