КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Статистическая и субъективная вероятность
Из классического определения вероятности следует, что вероятность выпадения орла при бросании монеты равна 0,5. Однако можно определить вероятность данного события и другим способом – с помощью эксперимента. Но прежде введем понятие относительной частоты. Определение 6.9. Предположим, что в серии из испытаний интересующие нас событие произошло ровно раз. Отношение называется относительной частотой и обозначается . Проведем мысленный эксперимент. Предположим, что монету бросили 10 раз. В этом случае возможно, что орел выпадет 3 раза, 5 раз или 9 раз. Таким образом, относительная частота принимает значения 0,3, 0,5 и 0,9 соответственно. Если мы будет бросать 100 раз, то относительная частота вероятнее всего будет принимать значения 0,4-0,6. Маловероятно, что она будет приближаться к 0,9, как в случае с меньшим числом испытаний. Если число испытаний мы увеличим, например, до 10000, то нам будет очевидно, что относительная частота будет стремиться с небольшими отклонениями к 0,5. Определение 6.10. Статистической вероятностью события называется относительная частота появления события вычисленная по результатам большого числа испытаний, т.е.: (6.8) где – число испытаний, – число испытаний, в которых событие появилось. Отличие между статистической вероятностью и относительной частотой заключается в следующем. Относительная частота – результат многократных испытаний. С увеличением числа испытаний относительная частота проявляет тенденцию стабилизироваться, проявлять устойчивость, а именно, приближается с затухающими отклонениями к постоянному числу, называемому статистической вероятностью. Статистическая вероятность в отличие от классической вероятности является характеристикой экспериментальной. Классическая вероятность – априорная (до опыта), а статистическая апостериорная (после опыта). Определение 6.11. Если человек или группа людей оценивают вероятность наступления того или иного события на основе опыта, имеющейся информации и интуиции, то такая вероятность называется субъективной вероятностью. Классическая и статистическая вероятности – объективные. Субъективная вероятность включает индивидуальные суждения, информацию и другие критерии. Изучение субъективных вероятностей как области научного знания началось в 30-х гг. XX в. Поскольку идет процесс ее становления, то это – дискуссионная область теории вероятностей. Она близко ассоциируется с методами принятия решений в условиях неопределенности. Эксперт, оценивающий вероятность успеха какого-либо события, предлагает в качестве решения персональные суждения, базирующиеся на личном опыте, знании. Субъективная вероятность одного эксперта может сильно отличаться от субъективной вероятности другого при оценке одного и того же события.
Контрольные вопросы 1. Сформулируйте понятие случайного события. 2. Совместные и несовместные события. 3. Достоверные и невозможные события. 4. Какие события называются единственновозможными? 5. Какие события образуют полную группу? Противоположные события? 6. Классическое определение вероятности. Диапазон изменения вероятности случайного события. 7. Правило умножения в комбинаторике. Понятие факториала. 8. Перестановка, сочетание, размещение, размещение с повторениями. 9. Статистическое определение вероятности. Относительная частота появления события. 10. Субъективная вероятность.
Дата добавления: 2014-01-04; Просмотров: 531; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |