Вычислим работу, совершаемую силой всемирного тяготения со стороны тела массой М при перемещении тела массой m из положения, характеризуемого радиус-вектором r1 в положение с радиус-вектором r2 (см. рис. 4.5).
Рис. 4.5.
Вычисление работы силы тяготения и силы упругости.
Тяготеющая масса М расположена в точке О
Гравитационное поле является центральным, поскольку сила тяготения действует вдоль линии соединяющей материальную точку m (или центр масс этого тела) с центром О поля тяготения. По определению работы (4.2) имеем:
,
где сила F определяется законом (2.12).
Из рисунка видно, что dScosa=dr, поэтому dA=F(r)dr, и для А12 имеем:
.
Полученное выражение не содержит сведений о траектории движения тела, и можно утверждать, что работа центральной силы зависит только от начального и конечного расстояния r1 и r2 движущейся точки до силового центра.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление