Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Механическая энергия системы


A. Рассмотрим механическую систему, состоящую из n невзаимодействующих частиц, находящуюся в поле консервативных сил. Каждая из этих частиц обладает потенциальной Ui и кинетической Ti энергией. Для каждой частицы системы справедливо утверждение

.

Суммируя эти равенства по всем частицам получим

.

Соотношение (6.11) показывает, что полная механическая энергия системы невзаимодействующих между собой частиц в поле консервативных сил является аддитивной величиной. Наконец, из него следует закон сохранения энергии:

· полная механическая энергия системы невзаимодействующих между собой частиц, на которые действуют только консервативные силы, остается постоянной.

B. Рассмотрим, теперь, механическую систему, состоящую из n частиц, на которые могут действовать как консервативные F, так и неконсервативные F* силы. Каждая из этих частиц обладает потенциальной Ui и кинетической Ti энергией. Для i-ой частицы такой системы справедливо утверждение (6.9): при переходе из состояния 1 в состояние 2 изменение полной механической энергии этой частицы равно работе неконсервативных сил:

,

здесь – работа неконсервативной силы, действующей на i-ю частицу.

Суммируя аналогичные равенства для всех частиц системы получим

.

С. Рассмотрим, наконец, общий случай механической системы, состоящей из n взаимодействующих между собой частиц. Предположим, что величина внутренних сил fij зависит только от взаимного расстояния между частицами. Такие силы являются консервативными. Предположим также, что на частицы системы действуют внешние консервативные Fiи внешние неконсервативные Fi* силы.

Уравнение второго закона Ньютона для i-ой частицы имеет вид:

.

Умножая это уравнение скалярно на элементарное перемещение частицы dri=Vidt, получим

.

Если записать аналогичные уравнения для всех частиц системы и сложить их, то придем к выражению

.

Выясним смысл всех членов уравнения (6.13). Левая часть уравнения в соответствии с (5.12) представляет собой приращение dT кинетической энергии системы. Член согласно (5.1) равен убыли потенциальной энергии –dUвнешн системы во внешнем поле. Член равен работе внешних неконсервативных сил. Наконец, как следует из соотношений (4.4), (5.1), последний член в (6.13) равен убыли потенциальной энергии –dUвз взаимодействия частиц. Таким образом, формулу (6.13) можно записать так:



,

где – полная механическая энергия системы. Соотношение (6.14) позволяет дать следующую формулировку закона сохранения энергии:

· полная механическая энергия системы тел, на которые действуют лишь консервативные силы, остается постоянной.

Обратимся вновь к формуле (6.14), которая показывает, что механическая энергия системы может измениться только за счет работы неконсервативных сил. Это замечание позволяет дать еще одну формулировку закона сохранения энергии:

· если отсутствуют неконсервативные силы или они таковы, что не совершают работы в течение некоторого промежутка времени, то полная механическая энергия системы, находящейся в стационарном поле консервативных сил, остается постоянной в течение этого промежутка времени.

Уравнения (6.6), (6.11) и (6.14) это различные выражения закона сохранения полной механической энергии системы.

<== предыдущая лекция | следующая лекция ==>
Механическая энергия материальной точки | Упругое столкновение

Дата добавления: 2014-01-04; Просмотров: 165; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2021) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.002 сек.