КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Механизм действия буферных систем
Сущность буферного действия смеси слабой кислоты с ее солью можно рассмотреть на примере ацетатного буферного раствора. При добавлении к нему сильной кислоты (например, HCl) происходит реакция:
В результате этого воздействия сильная кислота замещается на эквивалентное количество плохо диссоциированной слабой кислоты буферной системы, поэтому концентрация ионов Н+ (активная кислотность) в растворе существенно не изменяется. Пока солевая компонента буферной системы не расходуется в данной реакции, раствор в той или иной степени будет сохранять свое буферное действие. При добавлении к буферной смеси сильного основания (например, NaOH) происходит реакция:
В результате сильное основание замещается на эквивалентное количество нейтральной соли буферной системы, поэтому концентрация ионов водорода в ней опять изменится незначительно. Буферное действие раствора при этом будет наблюдаться, пока полностью не расходуется слабая кислота. Если к буферному раствору попеременно добавлять в небольших количествах сильную кислоту или щелочь, то его буферное действие сможет сохраняться более длительное время, т.к. в результате протекающих реакций буферная система будет периодически восстанавливать свой первоначальный количественный и качественный состав. Для кислотной буферной системы, образованной двумя солями, механизм действия будет аналогичным. Рассмотрим его на примере фосфатного буфера: NaH2PO4 + Na2HPO4. Добавленная к нему сильная кислота провзаимодействует с солевой компонентой системы и заместится на эквивалентное количество компоненты, играющей роль слабой кислоты.
Внесенная щелочь, наоборот, заместится на эквивалентное количество нейтральной солевой компоненты буфера:
Механизм действия основных буферных систем рассмотрим на примере аммиачного буфера. Добавленная к нему сильная кислота провзаимодействует со слабым основанием и заместится на эквивалентное количество солевой компоненты буфера:
Щелочь вступит в реакцию с солью буферной системы и вместо нее образуется эквивалентное количество слабого основания:
Таким образом, рассмотренные примеры показывают, что буферное действие растворов независимо от их состава обусловлено взаимодействием внесенных в них ионов Н+ или ОН– с соответствующим компонентом буфера. В результате этого происходит их связывание в растворе за счет образования слабодиссоциированного продукта реакции, т.е. (говоря другими словами) перевод в потенциальную кислотность либо основность. Вследствие этого активная кислотность (основность) самой буферной системы существенно не изменяется и остается на первоначальном уровне. Вычисление рН и рОН буферных систем. Каждая из буферных систем характеризуется определенной присущей ей концентрацией ионов Н+ (активной кислотностью), которую система и стремится сохранить на неизменном уровне при добавлении к ней сильной кислоты либо щелочи. Установим на примере ацетатного буфера факторы, влияющие на величину активной кислотности. В растворе данной буферной системы происходят следующие процессы электролитической диссоциации:
CH3COOH CH3COO– + H+
CH3COONa → CH3COO– + Na+
(Гидролиз соли, т.е. взаимодействие ацетат-ионов с Н2О CH3COO– + HOH CH3COOH + OH– учитывать не будем.) Таким образом, ионы Н+ образуются только за счет диссоциации некоторого числа молекул уксусной кислоты. Этот процесс является обратимым и количественно характеризуется константой кислотности Kа: где с(H+) (или c(H3O+)), c(СН3СОО–) и c(СН3СООH) равновесные молярные концентрации ионов Н+, СН3СОО– и непродиссоциированных молекул кислоты.
Из данного уравнения можно выразить (активную кислотность буферной системы):
Кроме уксусной кислоты, в растворе присутствует ее соль CH3COONa. Она является сильным электролитом и полностью распадается на ионы. В результате этого концентрация анионов СН3СОО– резко возрастает, и согласно принципу Ле-Шателье, равновесие реакции диссоциации уксусной кислоты смещается влево, т.е. в сторону образования ее молекул. Причем диссоциация уксусной кислоты в присутствии собственной соли может быть настолько подавленной, что равновесную концентрацию ее нераспавшихся молекул в растворе можно считать равной концентрации СН3СООН, а равновесную концентрацию ацетат-ионов – исходной концентрации соли. В связи с этим выражение, по которому рассчитывается концентрация ионов Н+, можно записать иначе: где с(кислоты) и с(соли) – исходные концентрации компонентов буферной системы. Прологорифмируем полученное уравнение (с учетом того, что логарифм произведения равен сумме логарифмов сомножителей): и умножим обе его части на –1: Как было показано нами ранее
, a
В связи с этим запишем уравнение для расчета концентрации ионов Н+ в окончательном виде:
Данное выражение называется иначе уравнением Гендерсона-Гассельбаха. Его можно использовать для вычисления рН любой кислотной буферной системы. Например, для фосфатного буфера уравнение Гендерсона-Гассельбаха запишется следующим образом: (в данной системе роль слабой кислоты играет анион Н2РО4–, то . В водных растворах рН и рОН являются сопряженными величинами. Их сумма всегда равна 14, т.е.:
рН + рОН = 14
Зная концентрацию ионов Н+ или рН, можно вычислить концентрацию гидроксильных ионов или рОН.
Уравнения Гендерсона-Гассельбаха для расчета рОН и рН в оснóвных буферных системах выглядят следующим образом:
где pKb = –lg Kb (основания), с(основания) и с(соли) – исходные молярные концентрации компонентов данных буферных систем, т.е. слабого основания и его соли с сильной кислотой.
Дата добавления: 2014-01-04; Просмотров: 1381; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |