КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Диполь-дипольное
Белки ЛЕКЦИЯ 13
Это биополимеры, состоящие из ста и более АК остатков. Классификация: простые белки (протеины), состоящие из a-АК, сложные белки (протеиды), состоящие из белковой и небелковой частей. Аминокислотный состав определяет многие св-ва белков: заряд белковой молекулы, ИЭТ, способность к осаждению, структуру и биологическую активность. В настоящее время синтезированы простейшие белки – инсулин, рибонуклеаза, окситацин и др.
Первичная структура
При всем многообразии пептидов и белков принцип построения их молекул одинаков – связь между a-АК осуществляется за счет –СООН гр. одной АК и –NH2 гр. другой АК, которая в свою очередь своей карбоксильной группой связывается с аминогруппой третьей АК и т.д. Связь между остатками АК, а именно между группой С=О одной к-ты и группой NH другой к-ты, является амидной связью. В химии пептидов и белков она наз-ся пептидной связью:
Пептидная связь N-конец С-конец
Формально белковая или пептидная цепь представляет собой продукты поликонденсации АК. Один из концов цепи, где находится остаток АК со свободной аминогруппой, наз-ся N-концом (а сама АК – N–концевой), а другой конец цепи с остатком АК, имеющим свободную карбоксильную группу, наз-ся С–концом (а к-та - С-концевой). Т.о., пептидная цепь построена из повторяющихся скелет молекулы, и отдельных боковых групп – радикалов R, R/,R//. Первичная структура пептидов и белков – это последовательность аминокислотных остатков в полипептидной цепи. Сведения о последовательности a-АК остатков в цепи могут быть получены в результате постепенного, шаг за шагом, отщепления АК с одного конца цепи последующей идентификацией отщепленной a-АК. Такие методы существуют, и с их помощью установлена первичная структура многих пептидов и белков. Для синтеза белка важен не только набор АК, но и порядок их соединения, т.е. первичная структура. Последняя обусловливает активность белков. Определенную последовательность АК в цепи дает использование операции “защита”. 1. “Защита” –NH2 гр. проводится методом ацилирования АК хлорангидридом или ангидром к-ты или на практике карбобензоксихлоридом (бензиловым эфиром хлормуравьиной к-ты):
Ацилхлорид
2. “Защита” –СООН гр. проводится путем образования сложного эфира:
Затем проводят р-цию взаимодействия защищенных молекул в присутствии водоотнимающих средств. В этих условиях реагируют строго определенные группы –СООН первой молекулы и –NH2 – второй:
Затем проводят гидролиз в мягких условиях с освобождением защищенных групп и сохранением пептидной связи:
Стратегию пептидного синтеза разработал и осуществил Э.Фишер еще в начале ХХв. Последовательным наращиванием цепи из АК он синтезировал (1907) первое белковоподобное вещ-во, состоящее из 18 АК. Он показал, что АК являются “строительным материалом” белков. Он был автором гипотезы “ключа и замка”, объясняющей специфичность действия белковых катализаторов-ферментов. Задача химического синтеза белковых макромолекул пока еще слишком сложна (и экономически неоправданна), но получение химическим путем относительно коротких пептидов в настоящее время вполне реально. Достижения в области синтеза пептидов позволяют автоматизировать процесс и вести его по заданной программе. С помощью приборов (синтезаторов) получены пептиды, содержащие десятки АК, и даже некоторые белки. Аналогично синтезу пептидов автоматизации поддается и метод анализа перичной структуры пептидов.
Вторичная структура Цепи пептидов и белков принимают в пространстве определенную более или менее компактную форму. Уникальная особенность белковых молекул заключается в том, что они имеют, как правило, четкую пространственную структуру, или конформацию. В данном случае понятие конформации применяется для пространственного строения длинных полипептидных цепей. Как только молекула окажется развернутой или уложенной иным способом в пространстве она почти всегда теряет свою биологическую функцию. Л.Полинг, Р.Кори (1951) на основании расчетов предсказали наиболее выгодные способы укладки цепей в пространстве. Пептидная цепь может укладываться в виде спирали (подобно винтовой лестницы). В одном витке спирали помещается около четырех АК остатков. Закрепление спирали обеспечивается водородными связями между группами С=О и NН, направленными вдоль оси спирали. Все боковые радикалы R АК находятся снаружи спирали. Такая конформация наз-ся a-спиралью. Другой вариант упорядоченной структуры полипептидной цепи – b-структура, или b-складчатый слой. В этом случае скелет находится в зигзагообразной конформации, и цепи располагаются параллельно друг другу, удерживаясь Н-связями. Вторичная структура белка – это более высокий уровень структурной организации, в котором закрепление конформации происходит за счет Н-связей между пептидными группами.
Конформация белковой молекулы стабилизируется не только Н-связями, но и за счет некоторых ионных взаимодействий, а также за счет окисления SН-групп боковых радикалов R возникает ковалентная дисульфидная связь.
Третичная структура Это укладка полипептидной цепи, включающей элементы той или иной вторичной структуры в пространстве, т.е. образование трехмерной конфигурации белка. Чаще всего это – клубок. Стабилизируют третичную структуру Н-связи, электростатическое взаимодействие заряженных групп, межмолекулярные силы Ван дер Ваальса, гидрофобные взаимодействия – вызванные вталкиванием радикалов R внутрь молекулы белка молекулами воды:
Электрическое Ковалентные Гидрофобное взаимодействие связи взаимодействие
взаимодействие
Четвертичная структура Несколько отдельных полипептидных цепей способны укладываться в более сложные образования, называемые также комплексами или агрегатами. При этом каждая цепь, сохраняя характерную для нее первичную, вторичную и третичную структуры, выступает в роли субъединицы комплекса с более высоким уровнем пространственной организацией – четвертичной структурой. Такой комплекс представляет собой единое целое и выполняет биологическую функцию, не свойственную отдельно взятым субъединицам. Четвертичная структура закрепляется за счет Н-связей и гидрофобных взаимодействий между субъединичными полипептидными цепями. Определение четвертичной структуры белковых агрегатов возможно только с помощью высокоразрешающих физикохимических методов (рентгенография, электронная микроскопия). Четвертичная структура характерна лишь для некоторых белков, например, гемоглобина. Главная функция гемоглобина (основного компонента эритроцитов) состоит в переносе кислорода из легких к тканям организма. Его четвертичная структура – образование из четырех полипептидных цепей (субъединиц), каждая из которых содержит гем.
Физико-химичекие св-ва Для белков характерны высокая вязкость р-ров, низкая диффузия, способность к набуханию, подвижность в электрическом поле, низкое осмотическое давление. Белки, как и АК, амфотерны за счет свободных групп –NН2 и –СООН. В зависимости от рН среды, соотношения кислых и оснóвных АК остатков белки несут положительный или отрицательный заряды, что и используется при электрофорезе. Подобно биурету полипептиды и белки дают качественную р-цию с Сu(ОН)2 – красно-фиолетовое окрашивание и она наз-ся биуретовой р-цией. Белки отличаются друг от друга по составу, форме, растворимости, биологической активности, молярной массе. Часть из них синтезируется в организме, другие должны поступать извне. Они состоят в основном из 20 АК остатков. Строение белков было установлено на основе р-ций гидролиза. По продуктам гидролиза все белки делят на две группы:
Простые Сложные (протеины) (протеиды) Это белки крови: альбумин, Гемоглобин (НЬ), цитохромы, глобулин, фибриноген и др. флавопротеиды и др. При гидролизе простых белков При гидролизе сложных белков образуется только АК образуются АК+др. соединения (Ме, липиды, углеводы, комплексные соединения и пр.)
Фибриллярные белки – это белки, молекулы которых состоят из параллельных, сравнительно вытянутых пептидных цепей, образуют палочковидные структуры. Они не растворимы и выполняют структурную и защитную функции в организме. Например, коллаген при нагревании превращается в беспорядочные клубки, получившие название желатины (в ней много глицина, гидроксипролина, гидроксилизина).
Глобулярные белки – это белки молекулы которых состоят из плотно свернутых полипептидных цепей и имеют форму, близкую к сферической. К ним относятся ферменты, антитела, гормоны, альбумин, гемоглобулин и др. Они растворимы в водно-солевых р-рах. Некоторые белки, например, миозин и фибриноген имеют палочковидную структуру, однако хорошо растворимы в воде.
Денатурация белков Под влиянием многих факторов пространственная структура способна разрушаться, что приводит к потере биологической активности белков. К таким факторам относятся повышенная температура, изменение рН среды, УФ – и рентгеновское излучения, механическое воздействие (встряхивание), соли тяжелых Ме, алкалоиды и др. Денатурация белков – это разрушение их природной (нативной) пространственной структуры с сохранением первичной структуры. Денатурация редко бывает обратимой. В этих немногих случаях важно то, что беспорядочно скрученная молекула денатурированного белка самопроизвольно принимает нативную пространственную структуру с полным сохранением биологической функции. В случаях отравления солями тяжелых Ме (ртути, свинца, серебра и др.) в качестве противоядия используют белки с повышенным содержанием кислотных групп, например яичный альбумин. Он действует как конкурент белков организма и сам связывает токсичный агент, образуя с ним нерастворимую соль, которая затем выводится из организма. В организме содержится более 50.000 различных белков. Кожа содержит 63% от массы сухой ткани, кости – 20%, зубы – 18%.
Функции белков: 1. Питательная (энергетическая – 20-25% – на белки), 17,6 кДж/г. 2. Транспортная (переносчики различных веществ) – гемоглобин, миоглобин и др. 3. Сократительная (белки мышечных тканей) – миозин и др. 4. Структурная (пластическая) – коллаген, фиброин, мембранные белки. 5. Каталитическая (белки-ферменты) – пепсин, каталаза, уреаза и др. 6. Регуляторная (белки-гормоны) – инсулин, вазопрессин и др. 7. Защитная (белки-антитела) – g-глобулины сыворотки крови. 8. Осмотическая, буферная, водно-солевая.
Дата добавления: 2014-01-04; Просмотров: 572; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |