Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Алгоритм Магу для определения множества внутренней устойчивости графа


Пусть дан граф . Для данного графа существует множество внутренней устойчивости .

Введем булевую переменную , которая определяется следующим образом:

, если вершина принадлежит множеству внутренней устойчивости ;

, если вершина не принадлежит множеству внутренней устойчивости ;

Введем булевую переменную :

, если между i-той и j-той вершиной есть дуга;

, если между i-той и j-той вершиной нет дуги.

Тогда определение внутренней устойчивости (3.4) может быть представлено в следующем виде:

(3.5)

Или используя булевую алгебру:

 

(3.6)

Применяя формулы равносильности, преобразуем:

(3.7)

Рассмотрим выражение:

(3.8)

Если , то данное равенство является тавтологией.

Если , то равенство имеет вид:

(3.9)

Данное уравнение лежит в основе алгоритма Магу

 

Алгоритм Магу состоит из следующих этапов:

1. Для графа составляется матрица смежности.

2. По таблице смежности выписываются все парные дизъюнкции.

3. Выражение приводится к ДНФ.

4. Для любой элементарной конъюнкции выписываются недостающие элементы, которые и образуют множество внутренней устойчивости.

 

ПРИМЕР

Дан граф

 

 

 
 


Рис. 3.7 Граф

Матрица смежности имеет вид:

 

 
 
     
     
     

 

Для всех единиц выписываются парные дизъюнкции:

(3.10)

Приведем выражение к ДНФ:

(3.11)

 

Множества внутренней устойчивости:

Числом внутренней устойчивости = 2.

 

<== предыдущая лекция | следующая лекция ==>
Множество внутренней устойчивости графа | Множество внешней устойчивости графа

Дата добавления: 2014-01-04; Просмотров: 520; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2021) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.002 сек.