Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Решение

Пример.

Решение.

Пример.

Решение.

Пример.

Из Перми до Чайковского можно добраться теплоходом, поездом, автобусом или самолетом; из Чайковского до Ижевска — теплоходом или автобусом. Сколькими способами можно осуществить путешествие по маршруту Пермь—Чайковский—Ижевск?

Число разных путей из Перми до Ижевска равно 4•2=8, так как, выбрав любой из четырех возможных способов путешествия из Перми до Чайковского, имеем 2 возможных способа путешествия из Чайковского до Ижевска.

 

Свойства аддитивности и мультипликативности иемют и множественную трактовку.

 

Из пункта А в пункт В в течение суток отправляются 16 поездов, 8 самолетов из автобуса. Сколькими способами можно в течение суток переехать из пункта А в пункт В.

Очевидно, что из пункта А в пункт В можно проехать различными 16-ю поездами, или 8-ю самолетами, или 3-мя автобусами. То есть всего существует 16+8+3=27 способов перемещения из пункта А в пункт В.

 

Сколько четырехзначных чисел можно составить из цифр 0,1,2,3,4,5, если:

а)ни одна цифра не повторяется больше одного раза в записи числа;

б)цифры в записи числа могут повторяться;

в)цифры могут повторяться в записи числа, но число должно быть нечетным.

а) Первой цифрой при этом может быть любая из 5 цифр 1,2,3,4,5 (0 не может быть первой цифрой, потому что в таком случае число не четырехзначное). Если первая цифра выбрана, то вторая может быть выбрана 5 способами, третья — 4 способами, четвертая — 3 способами. Согласно правилу произведения общее число способов равно 5•5•4•3=300.

б) Для первой цифры имеем 5 возможностей (1,2,3,4,5), для каждой из следующих цифр — 6 возможностей (0,1,2,3,4,5). Следовательно, общее количество чисел равно 5•6•6•6=1080.

в) Первой цифрой может быть одна из 5 цифр 1,2,3,4,5, а последней 1,3,5. Следовательно, общее количество чисел равно 5•6•6•3=540.

 

6.3. Размещения .

 

Число упорядоченных k элементных подмножеств (кортежей длиной в k компонент) множества из n элементов называется числом размещений из n элементов по k и обозначается (от фран. "arrangement" - размещение)

Теорема. Число размещений из n элементов по k вычисляется следующим образом:

(6.2)

 

Доказательство.

 

Произвольный кортеж имеет вид:

Элемент можно выбрать n способами. После каждого выбора элемент можно выбрать (n-1) способами. После каждого выбора элементов и элемент можно выбрать (n-2) способами, и т.д. После каждого выбора элементов , , …, элемент можно выбрать (n-(k-1)) = (n-k+1) способами. Тогда, по свойству мультипликативности, последовательность можно выбрать числом способов, равным:

(6.3)

Если произведение в левой части равенства умножить и разделить на (n-k)!, то выражение (6.3) будет иметь вид:

(6.4)

 

<== предыдущая лекция | следующая лекция ==>
Перестановки | Пример. Студенту необходимо сдать 4 экзамена за 8 дней
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 812; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.