КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Тема 3. Статистическая проверка гипотез
Статистической называют гипотезу о виде закона распределения или о параметрах известного распределения. В первом случае гипотеза непараметрическая, во втором – параметрическая. Гипотеза Н0, подлежащая проверке, называется нулевой (основной). Наряду с нулевой рассматривают гипотезуН1, которая будет приниматься, если отклоняется Н0. Такая гипотеза называется альтернативной (конкурирующей). Например, если проверяется гипотеза о равенстве параметра Θ некоторому значению Θ0, т.е. Н0: Θ= Θ0, то в качестве альтернативной могут рассматриваться следующие гипотезы: ; ; ; . Выбор альтернативной гипотезы определяется конкретной формулировкой задачи. Гипотезу называют простой, если она содержит одно конкретное предположение. Гипотезу называют сложной, если она состоит из конечного или бесконечного числа простых гипотез (; ; ). Сущность проверки статистической гипотезы заключается в том, чтобы установить, согласуются или нет данные наблюдений и выдвинутая гипотеза. Эта задача решается с помощью специальных методов математической статистики – методов статической проверки гипотез. При проверке гипотезы выборочные данные могут противоречить гипотезе Но. Тогда она отклоняется. Если же статистические данные согласуются с выдвинутой гипотезой, то она не отклоняется. В последнем случае часто говорят, что нулевая гипотеза принимается (такая формулировка не совсем точна, однако она широко распространена). Статистическая проверка гипотез на основании выборочных данных неизбежно связана с риском принятия ложного решения. При этом возможны ошибки двух родов. Ошибка первого рода состоит в том, что будет отвергнута правильная нулевая гипотеза. Ошибка второго рода состоит в том, что будет принята нулевая гипотеза, в то время как в действительности верна альтернативная гипотеза. Возможные результаты статистических выводов представлены следующей таблицей:
Последствия указанных ошибок неравнозначны. Первая приводит к более осторожному, консервативному решению, вторая - к неоправданному риску. Что лучше или хуже - зависит от конкретной постановки задачи и содержания нулевой гипотезы. Например, если Но состоит в признании продукции предприятия качественной и допущена ошибка первого рода, то будет забракована годная продукция. Допустив ошибку второго рода, мы отправим потребителю брак. Очевидно, последствия второй ошибки более серьезны с точки зрения имиджа фирмы и ее долгосрочных перспектив. Исключить ошибки первого и второго рода невозможно в силу ограниченности выборки. Поэтому стремятся минимизировать потери от этих ошибок. Отметим, что одновременное уменьшение вероятностей данных ошибок невозможно, так как задачи их уменьшения являются конкурирующими, и снижение вероятности допустить одну из них влечет за собой увеличение вероятности допустить другую. В большинстве случаев единственный способ уменьшения вероятности ошибок состоит в увеличении объема выборки. Вероятность совершить ошибку первого рода принято обозначать буквой α, и ее называют уровнем значимости. Вероятность совершить ошибку второго рода обозначают β. Тогда вероятность не совершить ошибку второго рода ( 1- β) называется мощностью критерия. Обычно значения α задают заранее, «круглыми» числами (например, 0,1; 0,05; 0,01 и т.п.), а затем стремятся построить критерий наибольшей мощности. Таким образом, если α = 0,05, то это означает, что исследователь не хочет совершить ошибку первого рода более чем в 5 случаях из 100. Общая схема проверки гипотез: 1.Формулировка проверяемой (нулевой - Но) и альтернативной (Н 1) гипотез. 2.Выбор соответствующего уровня значимости α. 3.Определение объема выборки п. 4.Выбор критерия К для проверки Но. 5.Определение критической области и области принятия гипотезы. 6.Вычисление наблюдаемого значения критерия Кнабл. 7. Принятие статистического решения.
Дата добавления: 2014-01-04; Просмотров: 371; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |