Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Элексир долголетия 7 страница

 

Одним из следствий произошедшей во второй половине XVII века научной революции явилось создание новой – научной – химии. Создателем научной химии традиционно считается Роберт Бойль.

 

Роберт Бойль и возникновение научной химии

 

Британский учёный Роберт Бойль являлся одним из крупнейших химиков, физиков и философов своего времени. В качестве основных научных достижений Бойля в химии можно отметить основание им аналитической химии (качественный анализ), исследования свойств кислот, введение в химическую практику индикаторов, изучение плотностей жидкостей с помощью изобретённого им ареометра. Нельзя не упомянуть и открытый Бойлем закон, носящий его имя (называемый также законом Бойля-Мариотта). Однако главной заслугой Бойля стала предложенная им новая система химической философии, изложенная в книге "Химик-скептик" (1661). Книга была посвящена поискам ответа на вопрос, что именно следует считать элементами, исходя из современного уровня развития химии. Бойль писал: "Химики до сих пор руководствовались чересчур узкими принципами, не требовавшими особенно широкого умственного кругозора; они видели свою задачу в приготовлении лекарств, в получении и превращении металлов. Я смотрю на химию с совершенно иной точки зрения: не как врач, не как алхимик, а как должен смотреть на неё философ. Я начертал здесь план химической философии, который надеюсь выполнить и усовершенствовать своими опытами и наблюдениями". Книга построена в форме беседы между четырьмя философами: Фемистом, перипатетиком (последователем Аристотеля), Филопоном, спагириком (сторонником Парацельса), Карнеадом, излагающим взгляды "мистера Бойля", и Элевтерием, беспристрастно оценивающим аргументы спорщиков. Дискуссия философов подводила читателя к выводу, что ни четыре стихии Аристотеля, ни три принципа алхимиков не могут быть признаны в качестве элементов. Бойль подчёркивал: "Нет никаких оснований присваивать данному телу название того или иного элемента только потому, что оно похоже на него одним каким-либо легко заметным свойством; ведь с тем же правом я мог бы отказать ему в этом названии, поскольку другие свойства являются разными". Исходя из опытных данных, Бойль показал, что понятия современной химии должны быть пересмотрены и приведены в соответствие с экспериментом.

 

Элементы, согласно Бойлю – практически неразложимые тела (вещества), состоящие из сходных однородных (состоящих из первоматерии) корпускул, из которых составлены все сложные тела и на которые они могут быть разложены. Корпускулы могут различаться формой, размером, массой. Корпускулы, из которых образованы тела, остаются неизменными при превращениях последних.

 

Главную задачу химии Бойль видел в изучении состава веществ и зависимости свойств вещества от его состава. При этом понятие состава Бойль считал возможным употреблять только тогда, когда из элементов, выделенных из данного сложного тела, можно обратно восстановить исходное тело (т.е. он фактически принимал синтез за критерий правильности анализа). Бойль в своих трудах не назвал ни одного элемента в новом понимании этого понятия; не указал он и число элементов, отмечая лишь, что "не будет абсурдом, если предположить, что число это много больше трёх или четырёх". Таким образом, книга "Химик-скептик" представляет собой не ответ на насущные вопросы химической философии, но постановку новой цели химии. Главное значение работы Бойля заключается в следующем:

 

1. Формулировка новой цели химии – изучения состава веществ и зависимости свойств вещества от его состава.

 

2. Предложение программы поиска и изучения реальных химических элементов;

 

3. Введение в химию индуктивного метода;

 

Представления Бойля об элементе как о практически неразложимом веществе (следует отметить, что тождество терминов "элемент" и "простое вещество" сохранялось до середины XIX века) быстро получили широкое признание среди естествоиспытателей. Однако создание теоретических представлений о составе тел, способных заменить учение Аристотеля и ртутно-серную теорию, оказалось очень сложной задачей. В последней четверти XVII века появились т.н. эклектические воззрения, создатели которых пытались увязать алхимические традиции и новые представления о химических элементах. Большое влияние на современников оказали взгляды французского химика Николя Лемери, автора широко известного учебника "Курс химии".

 

Учебник Лемери начинался с определения предмета химии: "Химия есть искусство, учащее, как разделять различные вещества, содержащиеся в смешанных телах. Я понимаю под смешанными телами те, которые образуются в природе, а именно: минералы, растительные и животные тела". Далее Лемери перечислял "химические начала", т. е. основные составные части тел. После некоего "универсального духа" (который сам автор признаёт "несколько метафизичным"), Лемери на основании анализа посредством огня выделял пять основных материальных начал веществ: спирт (иначе "ртуть"), масло (иначе "сера"), соль, вода ("флегма") и земля. Первые три начала – активные, вода и земля – пассивные.

 

Лемери, однако, отмечал, что эти субстанции являются для нас "началами" лишь постольку, поскольку химики не смогли далее разложить эти тела; очевидно, эти "начала" могут быть в свою очередь разделены на более простые. Таким образом, то, что принимается в качестве начал, – это субстанции, полученные в результате разделения смешанных тел и отделённые лишь настолько, насколько позволяют это сделать средства, которыми располагают химики.

 

На рубеже XVII-XVIII веков научная химия находилась лишь в самом начале своего пути; важнейшими препятствиями, которые лишь предстояло преодолеть, являлись сильные ещё алхимические традиции (ни Бойль, ни Лемери не отрицали принципиальную возможность трансмутации), ложные представления об обжиге металлов как о разложении и спекулятивный (умозрительный) характер атомизма.

 

Теория флогистона

 

Первая теория научной химии – теория флогистона – в значительной степени основывалась на традиционных представлениях о составе веществ и об элементах как носителях определённых свойств. Тем не менее, именно она стала в XVIII веке главным условием и основной движущей силой развития учения об элементах и способствовала полному освобождению химии от алхимии. Именно во время почти столетнего существования флогистонной теории завершилось начатое Бойлем превращение алхимии в химию.

 

Флогистонная теория горения была создана для описания процессов обжига металлов, изучение которых являлось одной из важнейших задач химии конца XVIII века. Металлургия в это время столкнулась с двумя проблемами, разрешение которых было невозможно без проведения серьёзных научных исследований – большие потери при выплавке металлов и топливный кризис, вызванный почти полным уничтожением лесов в Европе.

 

Основой для теории флогистона послужили традиционные представления о горении как о разложении тела. Феноменологическая картина обжига металлов была хорошо известна: металл превращается в окалину, масса которой больше массы исходного металла (Бирингуччо ещё в 1540 г. показал, что вес свинца увеличивается после прокаливания); кроме того, при горении имеет место выделение газообразных продуктов неизвестной природы. Целью химической теории стало рациональное объяснение этого феномена, которое можно было бы использовать для решения конкретных технических задач. Последнему условию не отвечали ни представления Аристотеля, ни алхимические взгляды на горение.

 

 

Обложка книги Г. Шталя (1715 г.)

 

 

Создателями теории флогистона считаются немецкие химики Иоганн Иоахим Бехер и Георг Эрнст Шталь. Бехер в книге "Подземная физика" (1669) изложил свои очень эклектичные взгляды на составные части тел. Таковыми, по его мнению, являются три вида земли: первая – плавкая и каменистая (terra lapidea), вторая – жирная и горючая (terra pinguis) и третья – летучая (terra fluida s. mercurialis). Горючесть тел, по мнению Бехера, обусловлена наличием в их составе второй, жирной, земли. Система Бехера очень похожа на алхимическое учение о трёх принципах, в котором горючесть обусловлена наличием серы; однако Бехер считает, что сера является сложным телом, образованным кислотой и terra pinguis. По сути, теория Бехера представляла собой одну из первых попыток предложить нечто новое взамен алхимического учения о трёх принципах. Увеличение массы металла при обжиге Бехер традиционно объяснял присоединением "огненной материи". Эти взгляды Бехера послужили предпосылкой к созданию теории флогистона, предложенной Шталем в 1703 г., хотя и имеют с ней очень мало общего. Тем не менее, сам Шталь всегда утверждал, что авторство теории принадлежит Бехеру.

 

Суть теории флогистона можно изложить в следующих основных положениях:

 

1. Существует материальная субстанция, содержащаяся во всех горючих телах – флогистон (от греческого φλογιστοζ – горючий).

 

2. Горение представляет собой разложение тела с выделением флогистона, который необратимо рассеивается в воздухе. Вихреобразные движения флогистона, выделяющегося из горящего тела, и представляют собой видимый огонь. Извлекать флогистон из воздуха способны лишь растения.

 

3. Флогистон всегда находится в сочетании с другими веществами и не может быть выделен в чистом виде; наиболее богаты флогистоном вещества, сгорающие без остатка.

 

4. Флогистон обладает отрицательной массой.

 

Теория Шталя, подобно всем предшествующим, также исходила из представлений, будто свойства вещества определяются наличием в них особого носителя этих свойств. Положение флогистонной теории об отрицательной массе флогистона (значительно более позднее и признававшееся не всеми сторонниками теории) было призвано объяснить тот факт, что масса окалины (или всех продуктов горения, включая газообразные) больше массы обожжённого металла.

 

Процесс обжига металла в рамках теории флогистона можно отобразить следующим подобием химического уравнения:

 

Металл = Окалина + Флогистон

 

Для получения металла из окалины (или из руды), согласно теории, можно использовать любое тело, богатое флогистоном (т.е. сгорающее без остатка) – древесный или каменный уголь, жир, растительное масло и т.п.:

 

Окалина + Тело, богатое флогистоном = Металл

 

Необходимо подчеркнуть, что эксперимент может только подтвердить справедливость этого предположения; это являлось хорошим аргументом в пользу теории Шталя. Флогистонная теория со временем была распространена на любые процессы горения. Тождество флогистона во всех горючих телах было обосновано Шталем экспериментально: уголь одинаково восстанавливает и серную кислоту в серу, и земли в металлы. Дыхание и ржавление железа, по мнению последователей Шталя, представляют собой тот же процесс разложения содержащих флогистон тел, но протекающий медленнее, чем горение.

 

Теория флогистона позволила, в частности, дать приемлемое объяснение процессам выплавки металлов из руды, состоящее в следующем. Руда, содержание флогистона в которой мало, нагревается с древесным углем, который очень богат флогистоном; флогистон при этом переходит из угля в руду, и образуются богатый флогистоном металл и бедная флогистоном зола.

 

Следует отметить, что в исторической литературе имеются серьёзные разногласия в оценке роли теории флогистона – от резко негативной до положительной. Однако нельзя не признать, что теория флогистона имела целый ряд несомненных достоинств:

 

– она просто и адекватно описывает экспериментальные факты, касающиеся процессов горения;

 

– теория внутренне непротиворечива, т.е. ни одно из следствий не находится в противоречии с основными положениями;

 

– теория флогистона целиком основана на экспериментальных фактах;

 

– теория флогистона обладала предсказательной способностью.

 

Флогистонная теория – первая истинно научная теория химии – послужила мощным стимулом для развития количественного анализа сложных тел, без которого было бы абсолютно невозможным экспериментальное подтверждение идей о химических элементах. Следует отметить, что положение об отрицательной массе флогистона фактически сделано на основании закона сохранения массы, который был открыт значительно позднее. Это предположение само по себе способствовало дальнейшей активизации количественных исследований. Ещё одним результатом создания флогистонной теории явилось активное изучение химиками газов вообще и газообразных продуктов горения в частности. К середине XVIII века одним из важнейших разделов химии стала т.н. пневматическая химия, основоположники которой Джозеф Блэк, Даниил Резерфорд, Генри Кавендиш, Джозеф Пристли и Карл Вильгельм Шееле явились создателями целой системы количественных методов в химии.

 

Во второй половине XVIII века теория флогистона завоевала среди химиков практически всеобщее признание. На основе флогистонных представлений сформировалась номенклатура веществ; предпринимались попытки связать такие свойства вещества, как цвет, прозрачность, щёлочность и т.п., с содержанием в нём флогистона. Французский химик Пьер Жозеф Макёр, автор весьма популярного учебника "Элементы химии" и "Химического словаря", писал в 1778 г., что флогистонная теория "…наиболее ясна и наиболее согласна с химическими явлениями. Отличаясь от систем, порождённых воображением без согласия с природой и разрушаемых опытом, теория Шталя – надёжнейший путеводитель в химических исследованиях. Многочисленные опыты… не только далеки от того, чтобы её опровергнуть, но, наоборот, становятся доказательствами в её пользу". По иронии судьбы, учебник и словарь Макёра появились в то время, когда век флогистонной теории подошёл к концу.

 

Кислородная теория горения

 

Нефлогистонные представления о горении и дыхании зародились даже несколько ранее флогистонной теории. Жан Рей, которому наука обязана постулатом "все тела тяжелы", ещё в 1630 г. высказывал предположение, что увеличение массы металла при обжиге обусловлено присоединением воздуха. В 1665 г. Роберт Гук (1635-1703) в работе "Микрография" также предположил наличие в воздухе особого вещества, подобного веществу, содержащемуся в связанном состоянии в селитре.

 

 

Опыт Мейоу по сжиганию тел под колоколом

 

 

Дальнейшее развитие эти взгляды получили в книге "О селитре и воздушном спирте селитры", которую написал в 1669 г. английский химик Джон Мейоу. Мейоу пытался доказать, что в воздухе содержится особый газ (spiritus nitroaëreus), поддерживающий горение и необходимый для дыхания; обосновывал он это предположение знаменитыми опытами с горящей свечой под колоколом. Однако выделить этот spiritus nitroaëreus в свободном состоянии удалось лишь более чем через сто лет. Открытие кислорода было сделано независимо друг от друга почти одновременно несколькими учёными.

 

Карл Вильгельм Шееле получил кислород в 1771 г., назвав его "огненным воздухом"; однако результаты опытов Шееле были опубликованы лишь в 1777 г. По мнению Шееле, "огненный воздух" представлял собой "кислую тонкую материю, соединённую с флогистоном".

 

Джозеф Пристли выделил кислород в 1774 г. нагреванием оксида ртути. Пристли считал, что полученный им газ представляет собой воздух, абсолютно лишённый флогистона, вследствие чего в этом "дефлогистированном воздухе" горение идёт лучше, чем в обычном.

 

Большое значение для создания кислородной теории горения имели, кроме того, открытие водорода Кавендишем в 1766 г. и азота Резерфордом в 1772 г. (следует отметить, что Кавендиш принял водород за чистый флогистон).

 

Значение сделанного Шееле и Пристли открытия смог правильно оценить французский химик Антуан Лоран Лавуазье. В 1774 г. Лавуазье опубликовал трактат "Небольшие работы по физике и химии", где высказал предположение о том, что при горении происходит присоединение к телам части атмосферного воздуха. После того, как Пристли в 1774 г. посетил Париж и рассказал Лавуазье об открытии "дефлогистированного воздуха", Лавуазье повторил его опыты и в 1775 г. опубликовал работу "О природе вещества, соединяющегося с металлами при их прокаливании и увеличивающего их вес" (впрочем, Лавуазье приписывал приоритет открытия кислорода себе). Наконец, в 1777 г. Лавуазье сформулировал основные положения кислородной теории горения:

 

1. Тела горят только в "чистом воздухе".

 

2. "Чистый воздух" поглощается при горении, и увеличение массы сгоревшего тела равно уменьшению массы воздуха.

 

3. Металлы при прокаливании превращаются в "земли". Сера или фосфор, соединяясь с "чистым воздухом", превращаются в кислоты.

 

Примечательно, что в своей работе "О горении вообще", излагая теорию, прямо противоположную теории флогистона, Лавуазье тем не менее отзывался о последней следующим образом: "Различные явления обжигания металлов и горения очень удачно объясняются гипотезой Шталя… но приходится допускать существование в горючих телах огненной материи".

 

Новая кислородная теория горения (термин кислород – oxygenium – появился в 1877 г. в работе Лавуазье "Общее рассмотрение природы кислот и принципов их соединения") имела ряд существенных преимуществ по сравнению с флогистонной. Она более проста, чем флогистонная, не содержала в себе "противоестественных" предположений о наличии у тел отрицательной массы, и, главное, не основывалась на существовании субстанций, не выделенных экспериментально. Вследствие этого кислородная теория горения довольно быстро получила широкое признание среди естествоиспытателей (хотя полемика между Лавуазье и флогистиками длилась ещё много лет).

 

Химическая революция

 

Значение кислородной теории оказалось значительно бóльшим, чем просто объяснение явлений горения и дыхания. Отказ от теории флогистона потребовал пересмотра всех основных принципов и понятий химии, изменения терминологии и номенклатуры веществ. Поэтому с создания кислородной теории начался переломный этап в развитии химии, названный "химической революцией".

 

В 1785-1787 гг. четыре выдающихся французских химика – Антуан Лоран Лавуазье, Клод Луи Бертолле, Луи Бернар Гитон де Морво и Антуан Франсуа де Фуркруа, – по поручению Парижской академии наук разработали новую систему химической номенклатуры. Логика новой номенклатуры предполагала построение названия вещества по названиям тех элементов, из которых вещество состоит. Основные принципы этой номенклатуры используются до настоящего времени.

 

В 1789 г. Лавуазье издал свой знаменитый учебник "Элементарный курс химии", целиком основанный на кислородной теории горения и новой химической номенклатуре. Появление этого курса собственно и ознаменовало, по мнению Лавуазье, химическую революцию (1789 – год начала Французской революции, одной из жертв которой станет в 1794 г. и Лавуазье). В "Элементарном курсе химии" Лавуазье привёл первый в истории новой химии список химических элементов (таблицу простых тел), разделённых на несколько типов:

 

1. Простые вещества, относящиеся ко всем царствам природы, которые можно рассматривать как элементы:

 

СВЕТ

 

ТЕПЛОРОД

 

КИСЛОРОД

АЗОТ

 

ВОДОРОД

 

2. Простые неметаллические вещества, окисляющиеся и дающие кислоты:

 

СЕРА

 

ФОСФОР

 

УГОЛЬ

РАДИКАЛ МУРИЕВОЙ КИСЛОТЫ (Cl)

 

РАДИКАЛ ПЛАВИКОВОЙ КИСЛОТЫ (F)

 

РАДИКАЛ БУРОВОЙ КИСЛОТЫ (B)

 

3. Простые металлические вещества, окисляющиеся и дающие кислоты:

 

СУРЬМА

 

СЕРЕБРО

 

МЫШЬЯК

 

ВИСМУТ

 

ЗОЛОТО

 

ВОЛЬФРАМ

КОБАЛЬТ

 

МЕДЬ

 

ОЛОВО

 

ЖЕЛЕЗО

 

ПЛАТИНА

 

ЦИНК

МАРГАНЕЦ

 

РТУТЬ

 

МОЛИБДЕН

 

НИКЕЛЬ

 

СВИНЕЦ

 

4. Простые солеобразующие землистые вещества:

 

ИЗВЕСТЬ

 

ГЛИНОЗЁМ

МАГНЕЗИЯ

 

КРЕМНЕЗЁМ

БАРИТ

 

 

Касательно земель Лавуазье на основании их абсолютной инертности к кислороду высказывал предположение о том, что земли представляют собой оксиды неизвестных элементов, впоследствии полностью подтвердившееся. Особую группу для земель в своей таблице элементов Лавуазье выделил, поскольку строго придерживался определения элемента, данного Бойлем: "Если мы… свяжем с названием элементов… представление о последнем пределе, достигаемым анализом, то все вещества, которые мы ещё не смогли никаким способом разложить, являются для нас элементами. …Мы не можем уверять, что считаемое нами сегодня простым является таковым в действительности". Данную концепцию элементов принято называть эмпирико-аналитической, поскольку Лавуазье избрал критерием определения элемента опыт и только опыт, категорически отвергая любые неэмпирические рассуждения об атомах и молекулах, само существование которых невозможно подтвердить опытным путём. Эту концепцию Лавуазье предельно ясно сформулировал в предисловии к своему учебнику: "Я не считал возможным уклониться от требований строгого закона – не заключать ничего сверх того, что даёт непосредственно опыт и не стараться спешными заключениями восполнять молчание фактов".

 

Созданная Лавуазье рациональная классификация химических соединений основывалась, во-первых, на различии в элементном составе соединений и, во-вторых, на характере их свойств (кислоты, основания, соли, солеобразующие вещества, органические вещества). При этом, как и Бойль, Лавуазье считает, что свойства вещества определяются его составом. Зависимость свойств вещества от состава, описанная Лавуазье, представляет собой закономерность, отражающую взаимосвязь между качественными и количественными характеристиками вещества.

 

Важнейшим результатом исследований Лавуазье явилось формулирование им закона сохранения массы. Проанализировав результаты собственных исследований количественного состава веществ и соотношения масс реагентов и продуктов реакции, а также результаты подобных исследований других учёных, Лавуазье показал, что во всех случаях масса веществ в ходе химических реакций не изменяется: "Можно принять в качестве принципа, что во всякой операции количество материи одинаково до и после опыта, что качество и количество начал остаются теми же самыми". Следует отметить, что Лавуазье вывел закон сохранения массы опять-таки исключительно из экспериментальных данных, не используя каких-либо теоретических предпосылок, не основанных на опыте.

 

Химическая революция завершила период становления химии; она ознаменовала собой полную рационализацию химии, окончательный отказ от устаревших натурфилософских и алхимических представлений о природе вещества и его свойств. После химической революции химия вступила в период количественных законов, в котором была создана и развита новая концепция химического элемента – атомно-теоретическая.

 

4. ПЕРИОД КОЛИЧЕСТВЕННЫХ ЗАКОНОВ

 

Стехиометрия - Атомистическая теория Дальтона - Проблема определения атомных масс - Электрохимические теории сродства

 

Стехиометрия

 

Блестящие успехи количественных методов исследования вещества, сделавшие возможной химическую революцию, уже в начале XIX века привели к новому фундаментальному изменению в естествознании вообще и в химии в частности. За открытым Лавуазье законом сохранения массы последовал целый ряд новых количественных закономерностей – стехиометрические законы.

 

Первым стехиометрическим законом стал закон эквивалентов, который сформулировал немецкий химик Иеремия Вениамин Рихтер в результате проведённых им в 1791-1798 гг. опытов по изучению количеств вещества в реакциях нейтрализации и обмена, обобщённых в работе "Начальные основания стехиометрии или искусства измерения химических элементов". Первоначальная формулировка закона эквивалентов (термин "эквивалент" ввёл в 1767 г. Г. Кавендиш) была следующей: "Если одно и то же количество какой-либо кислоты нейтрализуется различными количествами двух оснований, то эти количества эквивалентны и нейтрализуются одинаковым количеством любой другой кислоты".

 

Открытый Рихтером закон подтвердил убеждения многих химиков в том, что химические соединения взаимодействуют не в произвольных, а в строго определённых количественных соотношениях. Однако за этим последовала длительная дискуссия о том, присуща ли такая определённость всем без исключения химическим процессам. Основным предметом дискуссии стал вопрос о том, является ли постоянным соотношение элементов в соединении, состоящем из двух или более элементов, или же состав зависит от способа получения вещества. Клод Луи Бертолле, основываясь на предложенной им теории химического сродства*, обусловленного силами притяжения и зависящего от плотности вещества и его количества, отстаивал предположение о том, что элементный состав вещества может изменяться в некоторых пределах в зависимости от условий, в которых оно было получено.

 

В полемику с Бертолле отважился вступить французский химик Жозеф Луи Пруст. С помощью тщательных анализов в 1799-1806 гг. Пруст установил, что отношение количеств элементов в составе соединения всегда постоянно. Выводы Бертолле, как показал Пруст, были ошибочны из-за неточности анализов и недостаточной чистоты исходных веществ. Дискуссия завершилась блестящей победой Пруста. Закон постоянства состава (постоянных отношений) в итоге не просто был признан большинством химиков, но стал одним из главных химических законов. Однако вопрос о причинах постоянства состава оставался открытым, поскольку из чисто аналитической концепции химического элемента это никоим образом не следует. Разрешить существующие сомнения могло лишь предположение о дискретности материи, однако атомистические взгляды по-прежнему не имели прямых экспериментальных доказательств.

 

* Термин избирательное сродство предложил в 70-е гг. XVIII в. Торберн Улаф Бергман для объяснения реакционной способности веществ; он же составил первые таблицы сродства.

 

 

Атомистическая теория Дальтона

 

Экспериментальное подтверждение атомной гипотезы нашёл английский химик Джон Дальтон. В начале XIX века Дальтон открыл несколько новых эмпирических закономерностей: закон парциальных давлений (закон Дальтона), закон растворимости газов в жидкостях (закон Генри-Дальтона) и, наконец, закон кратных отношений.

 

Объяснить эти закономерности (прежде всего закон кратных отношений), не прибегая к предположению о дискретности материи, невозможно. Основываясь на законе кратных отношений, открытом в 1803 г., и законе постоянства состава, Дальтон разработал свою атомно-молекулярную теорию, изложенную в вышедшем в 1808 г. труде "Новая система химической философии".

 

Основные положения теории Дальтона состояли в следующем:

 

1. Все вещества состоят из большого числа атомов (простых или сложных).

 

2. Атомы одного вещества полностью тождественны. Простые атомы абсолютно неизменны и неделимы.

 

3. Атомы различных элементов способны соединяться между собой в определённых соотношениях.

 

4. Важнейшим свойством атомов является атомный вес.

 

Уже в 1803 г. в лабораторном журнале Дальтона появилась первая таблица относительных атомных весов некоторых элементов и соединений; в качестве точки отсчёта Дальтон выбрал атомный вес водорода, принятый равным единице. Для обозначения атомов элементов Дальтон использовал символы в виде окружностей с различными фигурами внутри. Впоследствии Дальтон неоднократно корректировал атомные веса элементов, однако для большинства элементов им приводились неверные значения атомных весов.

Простые атомы

Сложные атомы

 

Таблица Дальтона стала первым шагом на долгом пути, который предстояло пройти химии для того, чтобы величины атомных масс приняли привычные для нас значения. Разрешение проблемы определения атомных весов, потребовавшее усилий многих выдающихся учёных, заняло более пятидесяти лет! И даже после того, как проблема была в основном решена, точное определение атомным масс оставалось настолько важной задачей, что в 1914 г. американский учёный Теодор Ричардс был удостоен Нобелевской премии за уточнение атомных масс некоторых элементов.

<== предыдущая лекция | следующая лекция ==>
Элексир долголетия 6 страница | Элексир долголетия 8 страница
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 369; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.12 сек.