КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Использование десятичной, двоичной системы в компьютере
Системы счисления, используемые для работы с компьютером Продвижение целых чисел в позиционных системах счисления В каждой системе счисления цифры упорядочены в соответствии с их значениями: 1 больше 0, 2 больше 1 и т.д.
Продвинуть цифру 1 значит заменить её на 2, продвинуть цифру 2 значит заменить её на 3 и т.д. Продвижение старшей цифры (например, цифры 9 в десятичной системе) означает замену её на 0. В двоичной системе, использующей только две цифры — 0 и 1, продвижение 0 означает замену его на 1, а продвижение 1 — замену её на 0. Целые числа в любой системе счисления порождаются с помощью Правила счета [44]:
Применяя это правило, запишем первые десять целых чисел · в двоичной системе: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001; · в троичной системе: 0, 1, 2, 10, 11, 12, 20, 21, 22, 100; · в пятеричной системе: 0, 1, 2, 3, 4, 10, 11, 12, 13, 14; · в восьмеричной системе: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11.
Кроме десятичной широко используются системы с основанием, являющимся целой степенью числа 2, а именно: · двоичная (используются цифры 0, 1); · восьмеричная (используются цифры 0, 1,..., 7); · шестнадцатеричная (для первых целых чисел от нуля до девяти используются цифры 0, 1,..., 9, а для следующих чисел — от десяти до пятнадцати — в качестве цифр используются символы A, B, C, D, E, F). Полезно запомнить запись в этих системах счисления первых двух десятков целых чисел:
Из всех систем счисления особенно проста и поэтому интересна для технической реализации в компьютерах двоичная система счисления. Люди предпочитают десятичную систему, вероятно, потому, что с древних времен считали по пальцам, а пальцев у людей по десять на руках и ногах. Не всегда и не везде люди пользуются десятичной системой счисления. В Китае, например, долгое время пользовались пятеричной системой счисления. А компьютеры используют двоичную систему потому, что она имеет ряд преимуществ перед другими системами: · для ее реализации нужны технические устройства с двумя устойчивыми состояниями (есть ток — нет тока, намагничен — не намагничен и т.п.), а не, например, с десятью, — как в десятичной; · представление информации посредством только двух состояний надежно и помехоустойчиво; · возможно применение аппарата булевой алгебры для выполнения логических преобразований информации; · двоичная арифметика намного проще десятичной. Недостаток двоичной системы — быстрый рост числа разрядов, необходимых для записи чисел.
Дата добавления: 2014-01-04; Просмотров: 488; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |