КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Сущность метода сил
В рассматриваемом методе расчета статически неопределимых систем за основные неизвестные принимаются силы (внутренние усилия). Поэтому он и называется методом сил. Изучим метод сил на примере предыдущей балки (рис. 7.2 а). Потребуем, чтобы ее ЗС (рис. 7.2 а) и ОС (рис. 7.2 б) были эквивалентными. Для этого перемещение в направлении исключенной связи должно равняться нулю: D=0. По принципу суперпозиции, это перемещение равно сумме перемещения DX (рис. 7.3 а) от неизвестной реакции X и перемещения DP (рис. 7.3 б) от заданной силы P. Поэтому D=DX+DP=0. Это уравнение, учитывающее геометрические особенности системы, называется уравнениемсовместности деформаций. Рис. 7.3 Так как сила X неизвестна, перемещение DX непосредственно определить нельзя. Поэтому рассмотрим единичное состояние (ЕС) основной системы, где действует только единичная сила P=1 (рис. 7.3 в). Перемещение d, возникающее в нем в направлении единичной силы, называется податливостью, и его уже можно определить. По закону Гука, в линейно-упругой системе DX=d X. Тогда последнее уравнение принимает вид d X+DP=0. Его называют каноническим уравнением метода сил. Такое уравнение получается для любой один раз статически неопределимой системы. Если известны d и DP, из него определяется неизвестная сила: X= –DP/d. Если в системе имеется n лишних связей, то нужно исключить все эти лишние связи и выбрать ОС с n неизвестными X1, X2,..., Xn. Тогда, из условий эквивалентности ЗС и ее ОС (условий равенства нулю перемещений в направлениях исключенных связей) можно составить n уравнений совместности деформаций: =++×××++D1P=0, =++×××++D2P=0, .............. Dn=++×××++DnP =0. При рассмотрении n различных единичных состояний системы и определении податливостей по различным направлениям эти уравнения приводятся к системе уравнений: +X2+×××+Xn+DP=0, +X2+×××+Xn+D2P=0, ............. +X2+×××+Xn+DnP=0. Она называется системой канонических уравнений метода сил. Здесь – главные коэффициенты, – боковые коэффициенты. Свободные члены DiP называются грузовыми коэффициентами. Систему с большим количеством уравнений необходимо решать на компьютере. С этой целью введем матричные обозначения: d = ; X = ; DP = ; 0 = , где d – матрица податливости, X – вектор неизвестных, DP – вектор нагрузки, 0 – нуль-вектор. В результате этого система канонических уравнений принимает вид: d X + DP = 0. Из этого матричного уравнения определяется вектор неизвестных: X = – d –1 DP. Здесь d –1 – обратная матрица податливости.
Дата добавления: 2014-01-04; Просмотров: 333; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |