КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Переход к общей системе координат
Каждый КЭ в МКЭ вначале рассматривается в местной системе координат. Затем осуществляется переход к глобальной (общей) системе координат. Рассмотрим порядок такого перехода. Пусть некоторый узел i в местной системе координат имеет перемещения , , , которые следует преобразовать в перемещения узла , , в общей системе координат x-y (рис. 15.2 а). Поворот координатных осей осуществляется с помощью матрицы преобразования координат. Для плоской системы она имеет вид . Рис. 15.2 Если координатные системы ортогональны и поворот осуществляется на угол a, то . Для шарнирного узла с двумя степенями свободы . (1) Эти матрицы позволяют использовать матрицы и вектора геометрических и жесткостных характеристик КЭ, полученных в местной системе координат, для получения соответствующих характеристик КЭ в общей системе координат. Например, преобразование вектора координат прямоугольного КЭ с четырьмя шарнирными узлами i-j-k-m (рис. 15.2 б), рассматриваемого в местной системе координат , в общую систему координат x-y осуществляет матрица . Блоки этой матрицы имеют вид (1). Имея матрицу жесткости КЭ в местной системе координат, можно определять ее матрицу жесткости в общей системе координат по формуле .
Дата добавления: 2014-01-04; Просмотров: 283; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |