КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Принцип Гамильтона (наименьшего действия)
Пусть - вариация координаты (произвольное изменение координаты в данный момент времени). Будем рассматривать бесконечно малые , следовательно, 2-я возможная траектория будет в непосредственной близости от 1-ой. Возможная траектория – траектория, которая может получиться при данных взаимодействиях. Возможных траекторий много, реальных – одна. В начальной и конечной точке траектории вариации координат равны нулю: , т.е. и коммутативны: Будем искать первую вариацию (линейную вариацию по вариацию аргумента). Введём функционал: - функция Лагранжа, функция динамических переменных и времени. Принцип наименьшего действия: Из всех возможных траекторий, между данными точками, механической системы в конфигурационном пространстве реализуется та, для которой первая вариация действия равна нулю: Найдём : Тогда: Первое слагаемое в правой части данного выражения равно нулю, тогда остаётся: Координаты независимы, вариации этих координат так же независимы. Условие независимости означает, что все коэффициенты при равны нулю. В результате получаем: , Мы получили уравнения движения Лагранжа. Это дифференциальные уравнения второго порядка, что бы их решить, нужны начальные условия: и . В результате получим закон движения
Дата добавления: 2014-01-04; Просмотров: 274; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |