Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Приближение линейного тока. 1.Определить напряженность электрического поля внутри и снаружи равномерно заряженного шара

Задачи

1. Определить напряженность электрического поля внутри и снаружи равномерно заряженного шара. Объемная плотность заряда равна , радиус шара R.

 

Решение. Из принципа суперпозиции полей следует, что искомая напряженность поля равна разности напряженности электрического поля, создаваемого шаром без полости, и напряженности поля зарядов, заполняющих при этом полость.

Поле внутри полости

поле внутри шара (но вне полости)

поле снаружи шара

где - радиус-вектор, проведенный из центра шара к центру полости.

 

2. Определить коэффициенты разложения потенциала точечного заряда в интеграл Фурье.

Решение. Потенциал точечного заряда является решением уравнения

(1)

Представим и в виде разложений в интеграл Фурье:

(2)

Подставляя соотношения (2) в уравнение (1) и приравнивая в подынтегральных выражениях коэффициенты при , получим

.

3. Найти потенциал, создаваемый зарядом, распределенным в бесконечной среде по закону:

Решение. .

4. Определить потенциал точечного заряда е, находящегося в однородной анизотропной среде с заданным тензором диэлектрической проницаемости.

 

Решение. Предположив, что заряд расположен в начале координат, решим уравнения

Направим оси декартовой системы координат по главным осям тензора диэлектрической проницаемости. Тогда

Подставим соотношения (2) в уравнение (1):

Заменой уравнение приводится к виду

Здесь использовано свойство δ-функции:

Решение уравнения (4) имеет вид

где

 

 

Что бы рассчитать надо брать от каждого элементарного объёмчика площадку и интегрировать по всему току. Если размеры сечения проводника много меньше его длины, либо когда точка наблюдения сильно удалена, то неоднородностью тока в сечении можно пренебречь. На языке интегралов это пренебрежение сводится к:


Это есть приближение линейного тока, т.е. ток течёт по проводнику, сечение которого стремится к нулю. Тогда для потенциала имеем:

Если имеется система токов, то формулу можно обобщить:

 

<== предыдущая лекция | следующая лекция ==>
 | 
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 1012; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.