КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Система двух взаимно перпендикулярных плоскостей
Вопросы для самоанализа Обратимость чертежа. Метод Монжа Рассмотренный в § 2 и § 3 способ проецирования на одну плоскость проекций дает возможность решить прямую задачу (имея предмет, можно найти его проекцию), но не позволяет решить обратную задачу (имея проекцию, определить форму и размеры предмета). Например, имея проекцию Аp (рис. 1.9) нельзя определить положение самой точки в пространстве, так как не известно, насколько она удалена от плоскости проекций p. Наличие одной проекции создает неопределенность изображения. Решение этой задачи является основной в технической практике. Так, на производстве изделие изготавливают по его проекционным чертежам, которые должны полностью определять размеры и формы этого изделия. Чертеж должен быть “обратимым”, т.е. вполне определяющим проецируемые геометрические образы (объекты). В практике нашли применение несколько способов построения “обратимых” чертежей: проекции с числовыми отметками, “федоровские проекции”, аксонометрические проекции, комплексные проекции. В нашем случае будут рассмотрены чертежи, получаемые ортогональным проецированием на две и три взаимно перпендикулярные плоскости проекций, т. е. комплексные чертежи (метод Монжа). Выводы Начертательная геометрия как наука изучает вопросы изображений геометрических образов (точки, линии, плоскости, поверхности) на плоскости. Основным методом начертательной геометрии является метод проецирования. Способы проецирования могут быть центральными, параллельными (ортогональными и косоугольными). 1. На каком методе базируется начертательная геометрия? 2. Назовите способы проецирования. Дайте их определения. В чем суть каждого из них? 3. Назовите свойства проекций: а) центральных; б) параллельных косоугольных; в) ортогональных. 4. Можно ли ортогональное проецирование назвать параллельным? 5. В чем заключается метод Монжа?
Основные понятия, которые необходимо знать:
Глава 2 Проекция точки
Обратимость чертежа, как об этом говорилось ранее, т. е. однозначное определение положения точки в пространстве по ее проекциям, может быть обеспечена проецированием на две взаимно перпендикулярные плоскости проекций. 1. Пространство делится на четверти двумя взаимно-перпендикулярными плоскостями. 2. Для получения изображения объекта на плоскости выбирается ортогональное (прямоугольное) проецирование. 3. Для преобразования изображений, полученных на взаимно перпендикулярных плоскостях, изображение на одну плоскость, следует считать неподвижным (плоскость p 2), а плоскость p 1 – вращающейся вокруг оси до совмещения с плоскостью p 2. Рассмотрим две взаимно перпендикулярные плоскости проекций (рис. 2.1). Плоскость p 1, расположенную горизонтально, называют горизонтальной плоскостью проекций, вертикальную плоскость p 2 – фронтальной плоскостью проекций. Х – линия пересечения плоскостей проекций, которую называют осью проекций. Ось проекций делит каждую плоскость на две полуплоскости: p 1 – положительную и отрицательную, p 2 – положительную и отрицательную. Плоскости делят окружающее пространство на четыре четверти – I, II, III, IV (рис. 2.1 и 2.2).
§ 2. Точка в системе двух плоскостей проекций p 1 и p 2 Построение проекций точки (и любого геометрического образа) в системе двух взаимно перпендикулярных плоскостей проекций осуществляется ортогональным проецированием на каждую плоскость. Рассмотрим построение проекций некоторой точки А, расположенной в первой четверти системы p1/p2 (рис. 2.3). Проведя из А перпендикуляры (проецирующие лучи из бесконечно удаленных центров S1 и S2) к плоскостям проекций p1 и p2, получаем проекции точки А: горизонтальную проекцию А1, и фронтальную проекцию А2. Если спроецировать отрезки лучей АА1 из центра S2 и АА2 из центра S1, то получаем две взаимно перпендикулярные прямые А2Ах и А1Ах, соответственно. Эти прямые принято называть линиями связи проекций. Таким образом, точка А в пространстве характеризуется двумя проекциями А2 и А1 на плоскости p 1/p 2 и двумя линиями связи А2Ах и А1Ах (рис. 2.4).
Проверим, верна ли обратная задача. Если даны проекции А1, А2 некоторой точки А, то определяют ли они положение точки в пространстве (рис. 2.4). Решение: 1. Проведем из точки А1 перпендикуляр к плоскости p 1 (рис. 2.5). 2. Проведем из точки А2 перпендикуляр к плоскости p 2 (рис. 2.6). 3. Фигура АА1АхА2 имеет:
Следовательно, точка А есть точка, принадлежащая двум пересекающимся перпендикулярам, лежащим в одной плоскости, и она единственная. Таким образом, доказано, что две проекции определяют положение точки в пространстве.
Дата добавления: 2014-01-04; Просмотров: 838; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |