Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Элемент – это вещество, которое при химическом превращении всегда увеличивает свой вес


Например, при ржавлении куска железа его вес всегда увеличивается. Ржавление – это химическая реакция железа с водой и кислородом воздуха, поэтому в массу ржавого железа включается и масса прореагировавших с ним веществ. Химикам были известны и другие реакции, в которых железо увеличивало вес, но не существовало ни одной реакции, в которой железо разлагалось бы на более легкие продукты. Из этого заключалось, что железо, вероятно, является элементом.

Образцы пяти химических элементов из книги П.Эткинса "Молекулы". Желтая глыба – сера (S). Правее – медь (Cu). Красная жидкость в колбе – бром (Br2). В часовых стеклах – элементы иод (фиолетовые кристаллы I2) и ртуть (жидкий металл Hg).

Можно представить себе те трудности, с которыми сталкивались естествоиспытатели до появления теории строения атома. Тем не менее, еще до XIX века были правильно установлены многие элементы: углерод, сера, медь, золото, серебро, железо, свинец, олово, ртуть, цинк, мышьяк, сурьма, висмут, платина, фосфор, кобальт, никель, водород, кислород, азот, марганец.

Сумма тяжелых частиц (нейтронов и протонов) в ядре атома какого-либо элемента называется массовым числом и обозначается буквой А. Из названия этой величины видно, что она тесно связана с округленной до целого числа атомной массой элемента.

A = Z + N

ЗдесьA – массовое число атома (сумма протонов и нейтронов), Z – заряд ядра (число протонов в ядре), N – число нейтронов в ядре.

Природа устроена так, что один и тот же элемент может существовать в виде двух или нескольких изотопов. Изотопы отличаются друг от друга только числом нейтронов в ядре (числом N). Поскольку нейтроны практически не влияют на химические свойства элементов, все изотопы одного и того же элемента химически неотличимы. На рис. 2-5б показан изотоп углерода с массовым числом 12 (6 протонов + 6 нейтронов = 12), а на рис. 2-5в – изотоп углерода с массовым числом 13 (6 протонов + 7 нейтронов = 13).

Изотопами называются вещества, состоящие из атомов с одинаковым зарядом ядра (то есть с одинаковым числом протонов), но с разным числом нейтронов в ядре. Изотопы отличаются друг от друга только массовым числом. Все элементы состоят из одного или нескольких изотопов.

Например, алмаз состоит из элемента углерода. Если бы удалось изготовить два совершенно одинаковых брильянта из углерода с массовым числом 12 и углерода с массовым числом 13, то оба кристалла в химическом отношении были бы одним и тем же элементом углеродом (заряд ядра + 6), но их масса была бы немного разной. Правда, стоимость брильянтов из чистого углерода-12 и чистого углерода-13 была бы во много раз выше, чем у обычных. Дело в том, что разделять изотопы чрезвычайно трудно из-за того, что их химические и физические свойства очень близки.



** Лишь немногие изотопы в природе неустойчивы и поэтому постепенно распадаются с излучением субатомных частиц и электромагнитных волн. Это явление называется радиоактивностью, о которой мы уже упоминали в этой главе. Вопреки распространенному мнению термин изотоп совсем не обязательно связан с радиоактивностью – большинство природных (но не искусственных!) изотопов устойчиво и мы просто не замечаем их присутствие в том или ином элементе, поскольку не различаем их химические и физические свойства. Таковы изотопы железа, меди, хлора, кальция и многих других элементов, с которыми мы познакомимся немного позже.

Важнейшую роль во всей ядерной физике играет понятие энергии связи ядра. Энергия связи позволяет объяснить устойчивость ядер, выяснить, какие процессы ведут к выделению ядерной энергии. Нуклоны в ядре прочно удерживаются ядерными силами. Для того чтобы удалить нуклон из ядра, надо совершить довольно большую работу, т. е. сообщить ядру значительную энергию.

Под энергией связи ядра понимают ту энергию, которая необходима для полного расщепления ядра на отдельные нуклоны. На основе закона сохранения энергии можно также утверждать, что энергия связи ядра равна той энергии, которая выделяется при образовании ядра из отдельных частии.

Энергия связи атомных ядер очень велика. Но как ее определить?

В настоящее время рассчитать энергию связи теоретически, подобно тому как это можно сделать для электронов в атоме, не удается. Выполнить соответствующие расчеты можно, лишь применяя соотношение Эйнштейна между массой и энергией:

Е = mс2. (13.3)

Точнейшие измерения масс ядер показывают, что масса покоя ядра М21 всегда меньше суммы масс входящих в его состав протонов и нейтронов:

Мя< Zmp + Nmn. (13.4)

Существует, как говорят, дефект масс: разность масс

М = Zmp + Nmn - Мя

положительна. В частности, для гелия масса ядра на 0,75% меньше суммы масс двух протонов и двух нейтронов. Соответственно для гелия в количестве вещества один моль M = 0,03 г.

Уменьшение массы при образовании ядра из нуклонов означает, что при этом уменьшается энергия этой системы нуклонов на значение энергии связи Есв:

Есв = Мс2 = (Zmp + Nmn - Mя) с2. (13.5)

Но куда при этом исчезают энергия Есв и масса M?

При образовании ядра из частиц последние за счет действия ядерных сил на малых расстояниях устремляются с огромным ускорением друг к другу. Излучаемые при этом -кванты как раз обладают енергией Есв и массой .

Энергия связи— это энергия, которая выделяется при образовании ядра из отдельных частиц, и соответственно это та энергия, которая необходима для расщепления ядра на составляющие его частицы.

О том, как велика энергия связи, можно судить по такому примеру: образование 4 г гелия сопровождается выделением такой же энергии, что и при сгорании 1,5—2 вагонов каменного угля.

Важную информацию о свойствах ядер содержит зависимость удельной энергии связи от массового числа А.

Удельной энергией связи называют энергию связи, приходящуюся на один нуклон ядра. Ее определяют экспериментально. Из рисунка 13.11 хорошо видно, что, не считая самых легких ядер, удельная энергия связи примерно постоянна и равна 8 МэВ/нуклон. Отметим, что энергия связи электрона и ядра в атомеводорода, равная энергии ионизации, почти в миллион раз меньше этого значения. Кривая на рисунке 13.11 имеет слабо выраженный максимум.

Максимальную удельную энергию связи (8,6 МэВ/нуклон) имеют элементы с массовыми числами от 50 до 60, т. е. железо и близкие к нему но порядковому номеру элементы. Ядра этих элементов наиболее устойчивы.

У тяжелых ядер удельная энергия связи уменьшается за счет возрастающей с увеличением Z кулоновской энергии отталкивания протонов. Кулоновские силы стремятся разорвать ядро.

Частицы в ядре сильно связаны друг с другом. Энергия связи частиц определяется по дефекту масс.

Ядерные силы являются короткодействующими силами. Они проявляются лишь на весьма малых расстояниях между нуклонами в ядре порядка 10–15 м. Длина (1,5 – 2,2)·10–15 м называется радиусом действия ядерных сил.

Я́дерный реа́ктор — это устройство, в котором осуществляется управляемая цепная ядерная реакция, сопровождающаяся выделением энергии. Первый ядерный реактор построен и запущен в декабре 1942 года в СШАпод руководством Э. Ферми. Первым реактором, построенным за пределами США, стал ZEEP, запущенный в Канаде в сентябре 1945 года[1]. В Европе первым ядерным реактором стала установка Ф-1, заработавшая 25 декабря 1946 года в Москве под руководством И. В. Курчатова.[2]

К 1978 году в мире работало уже около сотни ядерных реакторов различных типов. Составными частями любого ядерного реактора являются: активная зона с ядерным топливом, обычно окруженная отражателем нейтронов, теплоноситель, система регулирования цепной реакции, радиационная защита, система дистанционного управления. Корпус реактора подвержен износу (особенно под действием ионизирующего излучения)[3]. Основной характеристикой ядерного реактора является его мощность. Мощность в 1 МВт соответствует цепной реакции, в которой происходит 3·1016 актов деления в 1 сек.

 

<== предыдущая лекция | следующая лекция ==>
ЭЛЕМЕНТОМ называется вещество, состоящее из атомов с одинаковым ЗАРЯДОМ ЯДРА | Магнитное поле в вакууме

Дата добавления: 2014-01-04; Просмотров: 206; Нарушение авторских прав?


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:

  1. C) СТРУКТУРА (ЭЛЕМЕНТЫ) ГРАЖДАСНКИХ ПРАВООТНОШЕНИЙ
  2. I. Вещество, вызывающее индукцию (активацию) микросомальных ферментов печени
  3. IV. Письмо элемента в прописях.
  4. IX.Корректировки проводятся по следующим элементам сравнения.
  5. Автомобильные пневмоприводы. Расчет и выбор элементов. Перспективы развития
  6. Активные элементы
  7. Активные элементы передатчика
  8. Базовая система элементов компьютерных систем
  9. Безвредность воды в отношении загрязнений, нормируемых по санитарно-токсикологическим показателелям или по химическому составу
  10. Бухгалтерский баланс предприятия: понятие, основные элементы.
  11. В зависимости от расстояния, на которое курсируют пассажирские поезда, они делятся на пригородные и дальние.
  12. В любом случает существуют определенные способы реализации власти, которые воплощаются в конкретных элементах распорядительной деятельности.

studopedia.su - Студопедия (2013 - 2020) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.005 сек.