Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Определение. Соотношение неопределенностей Гэйзенберга





Соотношение неопределенностей Гэйзенберга.

 

Принцип неопределённости Гейзенбе́рга (или Га́йзенберга) в квантовой механике — фундаментальное неравенство (соотношение неопределённостей), устанавливающее предел точности одновременного определения пары характеризующих квантовую систему физических наблюдаемых (см. физическая величина), описываемых некоммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного поля). Соотношение неопределённостей[* 1] задаёт нижний предел для произведения среднеквадратичных отклонений пары квантовых наблюдаемых. Принцип неопределённости, открытый Вернером Гейзенбергом в 1927 г., является одним из краеугольных камней квантовой механики.

Если имеется несколько (много) идентичных копий системы в данном состоянии, то измеренные значения координаты и импульса будут подчиняться определённому распределению вероятности — это фундаментальный постулат квантовой механики. Измеряя величину среднеквадратического отклонения координаты и среднеквадратического отклонения импульса, мы найдем что:

,

где ħ — приведённая постоянная Планка.

Отметим, что это неравенство даёт несколько возможностей — состояние может быть таким, что может быть измерен с высокой точностью, но тогда будет известен только приблизительно, или наоборот может быть определён точно, в то время как — нет. Во всех же других состояниях и , и могут быть измерены с «разумной» (но не произвольно высокой) точностью.

 

Обобщённый принцип неопределённости

Принцип неопределённости не относится только к координате и импульсу (как он был впервые предложен Гейзенбергом). В своей общей форме он применим к каждой паресопряжённых переменных. В общем случае, и в отличие от случая координаты и импульса, обсуждённого выше, нижняя граница произведения «неопределённостей» двух сопряжённых переменных зависит от состояния системы. Принцип неопределённости становится тогда теоремой в теории операторов, которая будет приведена далее.

Теорема. Для любых самосопряжённых операторов: и , и любого элемента из такого, что и оба определены (то есть, в частности, и также определены), имеем:

Это прямое следствие неравенства Коши — Буняковского.

Следовательно, верна следующая общая форма принципа неопределённости, впервые выведенная в 1930 г. Говардом Перси Робертсоном и (независимо) Эрвином Шрёдингером:

Это неравенство называют соотношением Робертсона — Шрёдингера.

Оператор называют коммутатором и и обозначают как . Он определен для тех , для которых определены оба и .

Из соотношения Робертсона — Шрёдингера немедленно следует соотношение неопределённости Гейзенберга:



Предположим, и — две физические величины, которые связаны с самосопряжёнными операторами. Если и определены, тогда:

,

где:

— среднее значение оператора величины в состоянии системы, и

— оператор стандартного отклонения величины в состоянии системы.

Приведённые выше определения среднего и стандартного отклонения формально определены исключительно в терминах теории операторов. Утверждение становится однако более значащим, как только мы заметим, что они являются фактически средним и стандартным отклонением измеренного распределения значений. См. квантовая статистическая механика.

То же самое может быть сделано не только для пары сопряжённых операторов (например координаты и импульса, или продолжительности и энергии), но вообще для любой парыЭрмитовых операторов. Существует отношение неопределённости между напряжённостью поля и числом частиц, которое приводит к явлению виртуальных частиц.

Возможно также существование двух некоммутирующих самосопряжённых операторов и , которые имеют один и тот же собственный вектор . В этом случае представляет собой чистое состояние, которое является одновременно измеримым для и .

 





Дата добавления: 2014-01-04; Просмотров: 539; Нарушение авторских прав?


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:

  1. Определение.
  2. Определение. Выражение называется главным значением логарифма.
  3. Определение. Дополнительным к событию А называется событие , означающее, что событие А не происходит.
  4. Определение. Если вектор является линейной комбинацией векторов , то говорят, что вектор линейно выражается через векторы .
  5. Определение. Если каждому натуральному числу n поставлено в соответствие число хn, то говорят, что задана последовательность
  6. Определение. Матрицы, полученные в результате элементарного преобразования, называются эквивалентными.
  7. Определение. Множество касательных в каждой точке рассматриваемой области называется полем направлений.
  8. Определение. Наивысший порядок производных, входящих в уравнение, называется порядком дифференциального уравнения.
  9. Определение. Поверхностный интеграл называется потоком векторного поля через поверхность D.
  10. Определение. Точка О называется полюсом, а луч l – полярной осью.
  11. Определение. Точки максимума и минимума функции называются точками экстремума.

studopedia.su - Студопедия (2013 - 2020) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.003 сек.