Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Микрочастица в прямоугольной потенциальной яме

 

Одна из простейших задач о движении микрочастиц – это задача о движении в прямоугольной потенциальной яме с очень высокими стенками. Рассмотрим одномерный случай. (Трехмерные задачи сложны в математическом отношении, а практически все принципиальные особенности движения микрочастиц можно выявить и на одномерных задачах.) Изменение потенциальной энергии по оси x описывается формулой

Какие примеры движения окружающего мира хотя бы приближенно описываются такой потенциальной функцией?

  • Вспомним "Кавказского пленника" (Л.Н.Толстой). Попавшего в плен Жилина держали в яме и требовали выкупа. Можно сказать, что для человека яма глубиной три метра – это яма с бесконечно высокими стенками. В ней человек может находиться в любом из состояний – от состояния покоя до интенсивного движения в бессильной ярости от невозможности выбраться на поверхность.
  • Другой пример – лототрон. В нем шарики либо лежат на дне, либо скачут в ограниченном стенками пространстве.

В мире микрочастиц взаимодействие протона и нейтрона в ядре тяжелого водорода приближенно описывается прямоугольным потенциалом. Этот же потенциал – чрезвычайно грубое приближение к задаче о движении электрона в атоме. Существенным для всех примеров является ограничение движения некоторой областью значений x. Стенки "ящика" бесконечно круты и бесконечно высоки. Частица не может покинуть такую яму.

Всю область изменения переменной x разобьем на три (см. рисунок 1). Вероятность нахождения частицы в областях x < 0 и x > a равна нулю, так что волновая функция Ψ(x) = 0. В центральной части мы положили для удобства U(x) = 0 (известно, что потенциальная энергия определена с точностью до константы). В этом случае уравнение Шредингера принимает вид

,

где m и E – масса и полная энергия частицы, соответственно. Введем обозначение

.

Уравнение приобретает вид и имеет решение

.

Постоянные A, α и β мы найдем из условий непрерывности волновой функции и нормировки. На левой границе Ψ(0) = A sin(α) = 0 дает α = 0. На правой границе Ψ(a) = A sin(βa) = 0 приводит к βa = πn, где n = 1, 2, 3,... Нулевое значение n в ряд допустимых значений не входит, т.к. иначе волновая функция везде бы обращалась в ноль. Движение частицы в потенциальной яме описывается набором волновых функций

.

Условие нормировки

.

Окончательный вид волновой функции

.

Возведем в квадрат левую и правую части равенства βa = πn, и вспомним, что значит β2. Тогда получим выражение для энергии

(1).

Самым важным результатом является то, что возможны только такие состояния, для которых E принимает одно из дискретных значений. Введенное выше число n называют квантовым числом. Значения En называют уровнями энергии. Говорят, что частица находится в квантовом состоянии n, если ее движение описывается волновой функцией Ψn(x). Три первых уровня энергии, соответствующие им волновые функции Ψ(x) и квадраты волновых функций изображены на рисунке 2.

Состояние с минимальной энергией (n = 1) называют основным, остальные - возбужденными. Обратите внимание на то, что энергия основного состояния не равна нулю. Про микрочастицы можно сказать – "покой им только снится". Это – общий результат квантовой механики, справедливый для всех ее задач и полностью чуждый классической механике.

Распределение плотности вероятности по координате | Ψ(x) |2 неоднородно и зависит от n. Чем больше n, тем сильнее неоднородность. С классической точки зрения на частицу в яме не действуют никакие силы, и она с равной вероятностью может находиться в любой точке.

Расстояние между соседними уровнями энергии

.

Чем меньше масса частицы и ширина области движения, больше ΔE. Для электрона (масса порядка 10-30 кг) в атоме (размер порядка 10-10 м) получим ΔE ~ 10 эВ, а для молекулы (масса ~ 10-27 кг) в сосуде (размер порядка 10-1 м) – ΔE ~ 10-20 эВ. В последнем случае (ширина ямы макроскопических масштабов) энергию молекулы можно считать непрерывно изменяющейся величиной.

Найдем еще относительное расстояние между уровнями

.

<== предыдущая лекция | следующая лекция ==>
Уравнение Шредингера. Волновая функция, ее физический смысл. Постановка задачи в квантовой механике | Атом водорода в квантовой механике
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 882; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.