КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Теорема взаимности
Входные и взаимные проводимости ветвей На рис. 2.3а изображена скелетная схема пассивной цепи. В каждой её ветви есть сопротивление. Выделим две схемы ветви m и k. Поместим в ветвь m Э.Д.С. (рис 2.3б). Выберем контуры в схеме так, чтобы k- ветвь входила только в k- контур, а m- ветвь, только в m-контур. Э.Д.С. Em вызовет точки в ветвях m и k. Коэффициенты q имеют размерность проводимости. Коэффициент qmm называют входной проводимостью ветви m, qkm – взаимной проводимостью. Для расчёта проводимостей составляют уравнения по методу контурных токов, следя за тем, чтобы ветви, взаимные и входные проводимости которых представляют интерес, входили каждая только в свой контур. Далее находят определитель системы ∆ и по нему необходимые алгебраические дополнения. Вычисляем проводимости по формуле 2.2: ; .
Теорема взаимности формируется таким образом: для любой линейной цепи с одним источником Э.Д.С. ток Ik в ветвях, вызванный Э.Д.С. Em, находящийся в m-ветви, будет равен току Im в m-ветви, вызванному Э.Д.С. Ek (численно равной Em) находящейся в k ветви.
На рис. 2.4 пассивным четырёхполюсником (прямоугольником с буквой П) обозначена вся остальная часть схемы, не содержащая источников Э.Д.С. и источников тока. Токи в ветвях m и k.
;
.
Можно отметить, что теорема взаимности справедлива не только для токов, но и для напряжений.
· Для нелинейных цепей теорема взаимности невыполнима. · Теорема взаимности справедлива лишь для тех линейных электрических цепей, которые содержат один источник Э.Д.С. ПРИМЕР:
При замкнутом ключе К в цепи источника протекает ток, равный 5А, а ток через амперметр равен 6 мА. Е=100 В R=5 Ом. Как изменятся эти токи, если ключ разомкнуть?
РЕШЕНИЕ:
Определим входное сопротивление четырёхполюсника: . После размыкания ключа К ток в цепи источника будет равен: . Для нахождения тока после размыкания ключа воспользуемся принципом взаимности, согласно которому источник Э.Д.С. Е и амперметр можно поменять местами. Схема приобретёт следующий вид: Если ключ К замкнут, то . Если амперметр убрать из схемы, то можно определить напряжение холостого хода на зажимах 1-2 (такой приём называется методом холостого хода и короткого замыкания, которые обычно используются для определения входного сопротивления).
.
После размыкания ключа ток, протекающий через амперметр, будет равен:
.
ОТВЕТ: .
Дата добавления: 2013-12-11; Просмотров: 432; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |