Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Следствия из преобразований Лоренца. Самым неожиданным следствием теории относительности является зависимость времени от системы отсчета

Самым неожиданным следствием теории относительности является зависимость времени от системы отсчета.

Длительность событий в разных системах отсчета. Пусть в некоторой точке , покоящейся относительно подвижной системы , происходит событие, длительность которого = - , где и - начальный и конечный промежутки времени. C помощью формул (7.4) получим, что длительность этого же события в неподвижной системе отсчета K равна

или

(7.5)

Из последнего равенства следует, что , т.е. для подвижной системы отсчета событие будет происходить за меньший промежуток времени. Следовательно, для подвижной системы отсчета время идет медленнее. Этот удивительный результат можно понять, если придумать специальные часы, в которых роль маятника играет световой сигнал, бегающий между двумя параллельными зеркалами, находящимися на расстоянии L. Период таких часов для системы отсчета, в которой они покоятся = 2L /с. Если эти часы движутся со скоростью v o вдоль оси x (рис. 7.2), то для неподвижного наблюдателя траектория движения луча выглядит в виде зигзага и расстояние, пройденное светом за период часов t, будет более длинным, его квадрат равен 4L2 + t2 = с2t2. Исключая L из двух последних равенств, легко получить выражение (7.5) t = /(1-- b 2)0,5. Если космонавт улетит от Земли со скоростью, близкой к скорости света (например, b 2 = 1 - 10-4 ), и вернется обратно через год, то по земным часам полет продлится 100 лет. Космонавт возвратится на Землю в сто раз более молодым, чем его брат-близнец. Данный результат мысленного эксперимента кажется неправильной интерпретацией преобразований Лоренца, так как, если за неподвижную систему отсчета считать движущийся корабль, то его близнец на Земле удаляется с такой же скоростью, и его время как бы замедлится по сравнению с часами на корабле. Однако эти две системы – не равнозначны, космонавт на корабле должен ускоряться и замедляться, чтобы вернуться на Землю. Поэтому система отсчета, связанная с кораблем ‑ неинерциальна. Получается, что причина замедления физических процессов связана с тем, что космонавт при путешествии подвергался дополнительным механическим перегрузкам. Детальный расчет, выходящий за рамки специальной теории относительности, показывает, что часы, движущиеся с ускорением, идут медленнее, поэтому при возвращении отстанут именно они.

Эффект замедления хода часов получил экспериментальное подтверждение при исследовании частиц m- мезонов, образующихся в космических лучах. Среднее время жизни неподвижных m- мезонов составляет 210-6 с. Казалось бы, что двигаясь со скоростью света m- мезоны могут пройти расстояние 600 м. Однако m- мезоны проходят расстояние 20-30 км и достигают земной поверхности, т.е. для земного наблюдателя время жизни m- мезонов оказывается гораздо большим.

Одновременность событий в разных системах отсчета. Пусть в подвижной системе в точках с координатами и происходят одновременно два события в момент времени = = b. Согласно формулам (7.4) в системе K этим событиям будут соответствовать координаты t1 = (b + v o /c2)/(1- - b 2)0,5 и t2 = (b + v o /c2)/(1-b 2)0,5. Из написанных формул видно, что если события в системе K пространственно разобщены ( ¹ ), они не будут происходить одновременно. Например, при > получим t1 > t2, т.е. событие в точке 1 для неподвижной системы отсчета произойдет раньше, хотя для подвижной системы эти события одновременны.

Длина тел в разных системах отсчета. Из преобразований (7.4) следует, что при движении тел их размеры по осям x и y не изменяются. Пусть в системе K покоится стержень, параллельный оси x. Длина его, измеренная в этой системе, равна l = x2 - x1, где x1 и x2 - координаты обоих концов стержня в системе K. Используя преобразования Лоренца (7.4), выразим длину стержня в следующем виде l = ( + v o )/(1- b 2)0,5 - ( + + v o )/(1- b 2)0,5 = ( - )/(1-b 2)0,5, гдеи - координаты концов стержня, измеренные в подвижной системе в один и тот же момент времени . Длина стержня в системе равна = - . Окончательно получим l = /(1- b 2)0,5 или = l(1- b 2)0,5. Отсюда следует l > . Длину l называют собственной длиной стержня в той системе отсчета, в которой он покоится. Это наибольшая длина стержня. Если предмет начинает двигаться, его размеры в направлении оси x сокращаются пропорционально (1- b 2)0,5 . Например, если неподвижное тело является шаром, то при движении шар сжимается вдоль оси x, приобретая форму эллипсоида вращения.

Релятивистский закон сложения скоростей. Пусть опять система движется относительно системы K со скоростью v o вдоль оси x. Пусть vx = dx/dt есть компонента скорости некоторой частицы в системе K, а = - компонента скорости ее в системе . Дифференцируя формулы (7.4), получим

; dy = d; dz = dz’; .

Разделив первые три равенства на четвертое и учитывая, что b = vo/c, находим

(7.6)

где vx, vy, vz - составляющие скорости частицы в системе K, , , - составляющие скорости частицы в системе . Полученные формулы и определяют преобразование скоростей. При с ®релятивистские формулы переходят в формулы классической механики.

Пусть корабль движется вдоль оси x со скоростью = c / 2 и некоторая частица движется в этом же направлении относительно корабля со скоростью = c / 2. По формулам (7.6) получим vx = 4c/5, т.е. по теории относительности 1/2 и 1/2 дают не 1, а 4/5.

Возьмем предельный случай. Положим, что человек на борту корабля наблюдает, распространение света вдоль оси x, т.е. = с. Тогда по формулам (8.6) получим vx = (с + )/(1 + c/c2) = c. Итак, скорость света для неподвижного наблюдателя опять равна скорости света.

<== предыдущая лекция | следующая лекция ==>
Постулаты специальной (частной) теории относительности. Преобразования Лоренца | Интервал между событиями
Поделиться с друзьями:


Дата добавления: 2013-12-12; Просмотров: 370; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.