Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Системообразующие факторы

Рис. 3.1. Механизм функционирования систем

Выходные элементы - это результат преобразования в системе или, говоря другими словами, полюс, через который система выдает ответные реакции на полученную информацию, ресурсы, энергию, воздействия со стороны внешней среды. Наиболее целесообразным и оптимальным вариантом функционирования системы является адекватность результатов целевым установкам деятельности системы. Однако в реальности так бывает далеко не всегда. В действие преобразователя могут вмешиваться различного рода факторы случайности и стихийности, непредвиденные обстоятельства. Поэтому и результат может в точности соответствовать цели, но может и существенно расходиться с ней, иметь значительные отклонения от нее. Он может носить вероятностный характер, быть одновариантным и поливариантным.

Пример. Для большей ясности рассмотрим схему функционирования системы превращения зерна в муку. В данном случае ресурсами системы, поступающими на ее вход, является зерно. В качестве преобразователя выступает мельница. Эффективность ее работы определяется многими факторами, например такими, как мощность, степень изношенности механизмов, энергоресурсы и т.п. Существует и явная зависимость от внешних факторов: подготовленности и слаженности работы обслуживающего персонала, его отношения к делу. Для ветряной мельницы эта зависимость может быть выражена в силе и скорости ветра. Результатом функционирования этой системы, полученным на ее выходе, является мука. Однако вряд ли возможно с абсолютной точностью предсказать, какое количество муки будет намолото из определенного количества зерна. Это зависит от качества самого зерна, эффективности функционирования мельницы как технического устройства. В данном случае цель является вероятностной. Она может колебаться в определенных расчетных пределах. Расхождение между планируемым и реальным результатом показывает отклонение системы от заданных параметров. При определенных условиях оно может служить одним из показателей эффективности функционирования системы, меры упорядоченности.

 

3.3. Принципы системного подхода.

При изучении и анализе существующих систем или создании новых необходимо опираться на следующие основные принципы.

Принципы системного подхода - это положения общего характера, являющиеся обобщением опыта работы человека со сложными системами. Известно около двух десятков таких принципов, ряд из которых целесообразно рассмотреть:

· принцип конечной цели: абсолютный приоритет конечной цели;

· принцип единства: совместное рассмотрение системы как целого и как совокупности элементов;

· принцип связности: рассмотрение любой части совместно с ее связями с окружением;

· принцип модульного построения: полезно выделение модулей в системе и рассмотрение ее как совокупности модулей;

· принцип иерархии: полезно введение иерархии элементов и (или) их ранжирование;

· принцип функциональности: совместное рассмотрение структуры и функции с приоритетом функции над структурой;

· принцип развития: учет изменяемости системы, ее способности к развитию, расширению, замене частей, накапливанию информации;

· принцип децентрализации: сочетание в принимаемых решениях и управлении централизации и децентрализации;

· принцип неопределенности: учет неопределенностей и случайностей в системе.

 

3.4. Системообразующие и системоразрушающие факторы

Системы существуют объективно, человек лишь выделяет по определенным признакам объекты, имеющие целостную природу, из окружающей его действительности. Но поддержание и функционирование систем, а также их разрушение происходит под воздействием определенных источников и причин. Те из них, которые направлены на обеспечение целостности объекта, его развитие, поддержание его дееспособности, называются системообразующими факторами. Источники и причины, действие которых вносит элементы деструктивности в связи и отношения системы, становятся помехой ее нормального функционирования и ведут к ее распаду, составляют системоразрушающие факторы. Если первые из них нацелены на установление равновесного состояния системы, то вторые направлены на ее дестабилизацию, потерю устойчивости.

Вопрос о том, какие причины и источники лежат в основе образования целостных объектов, их функционирования и развития, далеко не нов. Люди пытаются ответить на него уже многие тысячелетия. Но и сегодня однозначного ответа на этот вопрос нет. Можно лишь констатировать, что для некоторых конкретных системных объектов эти факторы более-менее познаны. Существование звездных систем астрофизики объясняют наличием сил тяготения. Химики в качестве причин возникновения вещественных систем выделяют взаимодействие атомов и молекул в процессе химических реакций. Но и на пути t выявления системообразующих факторов для конкретных процессов и явлений сохраняется огромное количество условностей и неясностей, обусловленных бесконечностью самого познавательного процесса, который постоянно; расширяется и углубляется. Скажем, физики-ядерщики определяют, что нуклоны в атомном ядре образуют систему на основе сильного взаимодействия, но его природа до сих пор не обнаружена.

Багаж накопленных человеком знаний позволяет не только выделить некоторые из системообразующих факторов, но и провести их классификацию.

Одним из наиболее значимых среди этих факторов является результатообразующий. Его не следует путать с целью. Последняя всегда ставится человеком и поэтому субъективна в своей основе. Результат же - это конечное состояние, к которому стремится любая система. Нельзя сказать, что атомы водорода и кислорода сознательно стремятся к образованию молекулы воды. Но ее возникновение есть результат их взаимодействия.

Как системообразующий фактор, результат придает движению связей и отношений системы целостную направленность. Он выступает в качестве объединяющего начала. Все части системы как единого целого работают на достижение ее конечного состояния. Результат подчиняет своим законам движение всех компонентов объекта. Стремление к его достижению побуждает систему напрягать все свои усилия, мобилизовывать свой внутренний потенциал. В ходе продвижения к конечному состоянию система вынуждена оказывать противодействия деструктивным силам и преодолевать их.

В качестве системообразующего фактора могут быть выделены связи обмена веществом, энергией, информацией между различными системами и внутри каждой из них. Этот фактор составляет сущность любого взаимодействия. В ходе этого взаимодействия одна система поглощает из другой все, что ей нужно для ее собственной жизнедеятельности. Точно так же этот обмен может происходить и между различными компонентами системы. Передавая друг другу энергию, необходимые вещества, информацию, все части целого получают нужный им заряд, компенсируют понесенные потери. В процессе него осуществляется саморегуляция системы, наполнение необходимыми для ее жизнеобеспечения продуктами.

Обмен как системообразующий фактор в значительной мере проявляет себя через функцию жизнеобеспечения систем.

Целесообразно отметить и фактор индукции, под которым понимается присущее всем системам свойство «достраивать» систему до ее завершения. Связи индукции как бы «возбуждают», инициируют к самодвижению в направлении завершенности. Они требуют, взывают к созданию каких-то дополнительных элементов для приведения системы в конечное состояние. При строительстве дома возведенный уже фундамент индуцирует необходимость кладки стен. Выстроенные стены побуждают покрыть дом крышей. Окончание внешних работ подталкивает к осуществлению внутренней отделки здания и так до полного завершения строительства дома. Данный фактор призван обеспечить полное внутреннее строение системы, наличие у нее всех необходимых составных частей.

При всей сложности и неоднозначности подходов к выделению системообразующих факторов, они могут быть классифицированы по различным основаниям. По отношению к самой системе они могут быть внутренними и внешними. К внутренним системообразующим факторам относятся те из них, которые порождаются объединяющимися в систему отдельными частями и элементами или всем многообразием взаимодействующих компонентов системы. К числу наиболее важных среди внутренних факторов может быть отнесен фактор выживаемости системы. Животные для того, чтобы противостоять хищникам, часто объединяются в стаи, стада, табуны и т.п. В экономике объединение предприятий нередко становится источником выживания в условиях мощной конкуренции. К внутренним системообразующим факторам относятся:

- фактор взаимозаменяемости; - фактор компенсации; - фактор саморегулирования; - фактор самовосстановления и некоторые другие.

Внешние системообразующие факторы - это факторы среды, которые способствуют возникновению и развитию систем. Они подразделяются на механические, физические, социальные, биологические и т.д. Характерным для них является то, что они отчуждены от самой системы и компонентов, ее составляющих, являются для них инородным телом. Эти факторы могут быть необходимыми и случайными. Например, электробритву, чтобы она заработала, нужно подключить к электросети.

По своему происхождению системообразующие факторы делятся на природные и искусственные. К природным системообразующим факторам относятся все те причины и источники создания системы, которые образованы естественным путем. К примеру, условием создания добывающего предприятия является наличие полезных ископаемых, которые собираются извлекать из недр земли. Природные факторы не являются творением человеческих рук, они существуют независимо от его желания и воли, но могут выступать в качестве важнейших факторов образования и функционирования как естественных, так и социальных систем.

Искусственные системообразующие факторы - это факторы, создаваемые человеком. Они бывают внутренними и внешними. Но каковыми бы они не были, чем больше люди познают окружающий мир, учатся использовать и управлять природными, техническими и общественными процессами, тем с большей пользой для себя они могут пользоваться создаваемыми ими самими факторами, влияющими на системные объекты. Их отличительной особенностью является то, что они имеют не только механическую, физическую, химическую и т.д., но и социальную природу. Автомобиль создан людьми, прежде всего исходя из потребности в передвижении. Зато в его устройстве использованы принципы и законы механики, физики, теории электрических цепей, радиоэлектроники и др.

В зависимости от степени влияния все системообразующие факторы подразделяются на главные и второстепенные. Главными являются факторы, оказывающие определяющее воздействие на процесс возникновения и функционирования целостного сложноорганизованного образования, Соответственно второстепенными называют факторы, участвующие в создании системы, но не играющие существенной роли. Взять, к примеру, современный самолет. Главным, существенным для него является то, что он может летать, перевозить людей и грузы. Второстепенным можно считать его окраску, ибо невзирая от нее он в состоянии выполнять возложенные на него функции. Правомерно говорить о необходимых и случайных, сильных и слабых, активных и пассивных системообразующих фактора х. Все они существуют в реальной действительности. Однако обратим внимания на факторы особого уровня абстракции, каковыми являются факторы притяжения и отталкивания. На первый взгляд, создается впечатление, что системообразующим является только фактор притяжения. Другой же фактор - отталкивания - ассоциируется с отторжением каких-либо частей целого, разрушением системы. В действительности же любое целостное образование способно возникнуть и нормально развиваться только в том случае, если в нем одновременно присутствует и притяжение, и отталкивание. Целостность атома обусловлена единством и равенством сил притяжения и отталкивания положительно и отрицательно заряженных частиц. Если бы системы строились только на основе притяжения, то они вылились бы в конгломеративные образования, которые оказалось бы сложно отделить друг от друга. Это одновременно означало бы и лишение их всякой противоречивости как источника развития. Если бы в окружающей действительности существовали только одни силы отталкивания, то тогда было бы вообще бессмысленно говорить о системах, так как в такой ситуации связи и взаимодействия между объектами либо отсутствовали, либо оказались столь размытыми, что никогда не смогли бы образовать какую-либо целостность. Поэтому единство притяжения и отталкивания являются одним из важнейших системообразующих факторов.

<== предыдущая лекция | следующая лекция ==>
Управление | 
Поделиться с друзьями:


Дата добавления: 2013-12-12; Просмотров: 910; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.