КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Замена переменной в неопределенном интеграле
Теорема 6.2. Пусть функция f(x) определена на множестве Х, а функция φ(t) – на множестве Φ, причем . Тогда, если функция f(x) имеет первообразную F(x) на Х, а φ(t) дифференцируема на Φ, то (6.1) Доказательство. , поэтому функция F(φ(t)) является первообразной функции f(φ(t)) φ΄(t). Следовательно, . С другой стороны, при x = φ(t) . В полученных формулах равны правые части, следовательно, равны и левые, что доказывает справедливость формулы (6.1). Замечание 1. Формулу (6.1) называют формулой интегрирования подстановкой. Замечание 2. Часто удобно бывает использовать формулу (6.1) «в обратную сторону»: , (6.2) то есть заменять переменную х функцией новой переменной t. Формула (6.2) носит название формулы интегрирования заменой переменной.
Замечание. Формулы (6.1) и (6.2) показывают, что вид первообразной не изменяется при замене независимой переменной х на функцию φ(t), поэтому их называют формулами инвариантности интегрирования. Примеры. 1. При этом была сделана подстановка x = sin t. 2. Интеграл был вычислен с помощью замены переменной: x = t ².
Дата добавления: 2013-12-12; Просмотров: 566; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |