![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Системы линейных уравнений общего вида
Если система (5.1) оказалась совместной, т. е. матрицы A и а) если б) если Перенесем лишние неизвестные Ее можно решить относительно x1, x2,..., xr, так как определитель этой системы (r-го порядка) отличен от нуля. Придавая свободным неизвестным произвольные числовые значения, получим по формулам Крамера соответствующие числовые значения для x1, x2,..., xr. Таким образом, при Система (5.1) называется однородной, если все bi = 0, т. е. она имеет вид:
Из теоремы Кронекера-Капелли следует, что она всегда совместна, так как добавление столбца из нулей не может повысить ранга матрицы. Это, впрочем, видно и непосредственно - система (5.5) заведомо обладает нулевым, или тривиальным, решением Если Всякий ненулевой вектор ‑ столбец Число Для нахождения собственных значений матрицы A перепишем равенство
Получили систему линейных однородных уравнений, которая имеет ненулевые решения тогда и только тогда, когда определитель этой системы равен нулю, т.е.
Получили уравнение n-ой степени относительно неизвестной l, которое называется характеристическим уравнением матрицы A, многочлен Для нахождения собственных векторов матрицы A в векторное уравнение Пример 2.16. Исследовать систему уравнений и решить ее, если она совместна. Решение. Будем находить ранги матриц A и
Очевидно, что Поскольку определитель при неизвестных x 1 и x 2 отличен от нуля, то их можно принять в качестве главных и переписать систему в виде: откуда Пример 2.17. Исследовать систему уравнений и найти общее решение в зависимости от значения параметра а. Решение. Данной системе соответствует матрица Отсюда видно, что система совместна только при a=5. Общее решение в этом случае имеет вид: Пример 2.18. Выяснить, будет ли линейно зависимой система векторов: Решение. Система векторов является линейно зависимой, если найдутся такие числа x 1, x 2, x 3, x 4, x 5, из которых хотя бы одно отлично от нуля (см. п. 1. разд. I), что выполняется векторное равенство:
В координатной записи оно равносильно системе уравнений: Итак, получили систему линейных однородных уравнений. Решаем ее методом исключения неизвестных: Система приведена к ступенчатому виду, ранг матрицы равен 3, значит, однородная система уравнений имеет решения, отличные от нулевого Имеем: Система имеет бесконечное множество решений; если свободные неизвестные x3 и x5 не равны нулю одновременно, то и главные неизвестные отличны от нуля. Следовательно, векторное уравнение имеет коэффициенты, не равные нулю одновременно; пусть например,
т.е. данная система векторов линейно независима. Пример 2.19. Найти собственные значения и собственные векторы матрицы
Решение. Вычислим определитель матрицы A Итак, Следовательно, собственному значению l = 2 отвечают собственные векторы вида a (8, 8, -3, 15), где a - любое отличное от нуля действительное число. При l = -2 имеем:
и поэтому координаты собственных векторов должны удовлетворять системе уравнений Поэтому собственному значению l = -2 отвечают собственные векторы вида b (0, 0,-1, 1), где b - любое отличное от нуля действительное число.
Дата добавления: 2013-12-12; Просмотров: 443; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |