КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Фотосинтез
Схема мейозу
Тема: Обмін речовин та енергії. Енергетичний обмін 1. Групи організмів за типами живлення. За типами живлення розрізняють такі групи організмів: Автотрофи - організми, здатні синтезувати органічні сполуки з неорганічних, використовуючі для цього різні форми енергії. Одні з них використовують для процесів синтезу енергію світла - це фототрофи (зелені рослини, фотосинтезуючі бактерії й ціанобактерії). Інші організми для цього використовують енергію хімічних реакцій - це хемотрофи (нітрифікуючі, сіркобактерії, залізобактерії тощо). Гетеротрофи – організми, джерелом енергії для яких є органічні речовини, синтезовані іншими організмами (живі організми, їхні рештки або продукти життєдіяльності), які вони одержують з їжею (тварини, гриби та більшість прокаріот). 2. Загальна характеристика обміну речовин та енергії. Обмін речовин та енергії (метаболізм) - сукупність процесів надходження поживних речовин в живі організми з навколишнього середовища, їхнього перетворення та виведення з організму продуктів життєдіяльності. Процеси, пов'язані з поглинанням із довкілля, засвоєнням і накопиченням хімічних речовин, які використовуються для синтезу сполук, потрібних для організму, називають асиміляцією. Сукупність реакцій синтезу, що забезпечують ріст клітин і поновлення їхнього хімічного складу, називають пластичним обміном. Процеси обміну речовин, які приводять до розкладу певних сполук, називають дисиміляцією. Сукупність реакцій розщеплення складних сполук, які супроводжуються виділенням енергії, називають енергетичним обміном. Таким чином, асиміляція та дисиміляція - це різні сторони єдиного процесу обміну речовин і перетворення енергії в живих організмах. 3. Аденозинтрифосфорна кислота та її роль у біоенергетичних процесах. Універсальним джерелом енергії для живих організмів є аденозинтрифосфорна кислота (АТФ). Це невипадково, молекула АТФ - нуклеотид, який складається із залишків азотистої основи (аденіну), вуглеводу (рибози) та трьох залишків фосфорної кислоти, які зв’язуються макроергічними зв’язками. Ця структура є нестійкою. Під дією ферменту може відщеплюється один залишок фосфорної кислоти, АТФ перетворюється на аденозиндифосфат (АДФ), вивільнюючи близько 42 кДж енергії. Коли від молекули АТФ відщеплюються два залишки фосфорної кислоти, утворюється аденозинмонофосфат (АМФ), при цьому вивільнюється 84 кДж енергії. Ця енергія використовується для синтезу необхідних організму сполук, підтримання певної температури тіла тощо. З іншого боку, частина енергії, що вивільнюється, витрачається на синтез АТФ. Таким чином, молекули АТФ є універсальним хімічним акумулятором енергії в клітинах. 4. Енергетичний обмін та його етапи. Енергетичний обмін організмів здійснюється у три послідовних етапи: підготовчий, безкисневий (анаеробне дихання) та кисневий (аеробне дихання). І. Підготовчий етап енергетичного обміну. Підготовчий етап енергетичного обміну у більшості багатоклітинних тварин і людини відбувається у шлунково-кишковому тракті, а також у цитоплазмі клітин одноклітинних організмів. На цьому етапі великі органічні молекули під дією ферментів розщеплюються до мономерів. Ці процеси перебігають з вивільненням незначної кількості енергії, яка розсіюється у вигляді теплоти. ІІ. Анаеробний етап енергетичного обміну (безкисневе неповне розщеплення). Цей етап енергетичного обміну відбувається в клітинах. Мономери, що виникли на попередньому етапі, зазнають подальшого багатоступеневого розщеплення без участі кисню. Найважливішим на безкисневому етапі енергетичного обміну є розщеплення в клітинах молекул глюкози переважно шляхом гліколізу – складного багатоступеневого процесу розщеплення молекули глюкози на дві молекули піровиноградної (С3Н4О3) або (особливо у м'язових клітинах) молочної кислоти (С3Н6О3), а також молочнокислого і спиртового бродіння (у деяких дріжджів і бактерій; ці реакції подібні до реакцій гліколізу, за винятком кінцевого етапу). Сумарне рівняння гліколізу має такий вигляд: С6Н12О6 + 2АДФ + 2Н3РО4 = 2С3Н4О3 + 2АТФ + 2Н2О піровиноградна кислота Сумарне рівняння молочнокислого бродіння має такий вигляд: С6Н12О6 + 2АДФ + 2Н3РО4 = 2С3Н6О3 + 2АТФ + 2Н2О молочна кислота Сумарне рівняння спиртового бродіння має такий вигляд: С6Н12О6 + 2АДФ + 2Н3РО4 = 2С2Н5ОН + 2АТФ + 2Н2О + 2СО2 етиловий спирт Під час анаеробного етапу енергетичного обміну виділяється близько 200 кДж енергії. Частина її (майже 84 кДж) витрачається на синтез двох молекул АТФ, а решта (приблизно 116 кДж) - розсіюється у вигляді теплоти. Таким чином, процес гліколізу енергетично малоефективний лише 35-40% енергії акумулюється у макроергічних зв'язках АТФ. Це пояснюється тим, що кінцеві продукти гліколіз все ще містять у собі чимало зв'язаної енергії. ІІІ. Аеробний етап енергетичного обміну (кисневе повне розщеплення). Кисневий (аеробний) етап енергетичного обміну можливий лише в аеробних умовах (за наявності кисню), коли органічні сполуки, що утворилися на безкисневому етапі, окислюються в клітинах до кінцевих продуктів - СО2 та Н2О. Цей процес називають тканинним диханням. Воно відбувається в мітохондріях. У внутрішній мембрані мітохондрій розміщений так званий дихальний ланцюг. Його основу утворюють переносники електронів, які входять до складу ферментних комплексів, що каталізують окиснювально-відновні реакції. Впродовж аеробного етапу виділяється 2600 кДж енергії, що забезпечує синтез 36 молекул АТФ. Сумарне рівняння аеробного дихання має такий вигляд: 2С3Н6О3 + 6О2 + 36Н3РО4 + 36АДФ = 6СО2 + 36АТФ + 36Н2О Сумарне рівняння ІІ і ІІІ етапів енергетичного обміну має такий вигляд: С6Н12О6 + 38АДФ + 38Н3РО4 + 6О2 = 38АТФ + 6СО2+ 44Н2О У ході цих процесів виділяється близько 2800 кДж енергії, з якої запасається 1596 кДж, або 55% ( у вигляді макроергічних зв'язків АТФ), а 45% - розсіюється у вигляді теплоти. Отже, основну роль у забезпеченні клітин енергією відіграє аеробний етап енергетичного обміну.
Тема: Пластичний обмін. Біосинтез білків 1. Біосинтез білків як один з основних процесів пластичного обміну. Однією з найважливіших ознак будь-якої живої клітини є здатність до синтезу білків. Це зумовлено тим, що у ході життєдіяльності молекули білків постійно руйнуються, не можуть виконувати притаманні їм функції. Такі молекули видаляються з клітини, а на томість синтезуються нові, повноцінні. 2. Роль ДНК у синтезі білків. Код ДНК, його властивості. Генетичний код - властива всім живим організмам єдина система збереження спадкової інформації в молекулах нуклеїнових кислот у вигляді певної послідовності нуклеотидів, яка визначає порядок введення амінокислот до поліпептидного ланцюга під час його синтезу. Ділянка молекули ДНК, яка несе інформацію про первинну структуру одного білка, має назву ген. Триплет - це ділянка ланцюга ДНК з трьох послідовно розташованих нуклеотидів, яка кодує одну з амінокислот. Властивості генетичного коду: 1) Код триплетний, тобто встановлено, що кожний амінокислотний залишок у поліпептидному ланцюзі кодується певною послідовністю з трьох нуклеотидів. 2) Код універсальний, тобто єдиний для всіх організмів, які існують на Землі. В усіх організмів одні й ті самі амінокислоти кодуються одними й тими самими триплетами. 3) Код вироджений, тобто одну амінокислоту можуть кодувати кілька різних триплетів, що підвищує надійність генетичного коду. 4) Код однозначний, тобто кожний триплет кодує лише одну певну амінокислоту. 5) Код не перекриваєтьс я, тобто генетична інформація може зчитуватися лише одним способом. Послідовність нуклеотидів починає зчитуватися із певної точки в одному напрямку, що визначає порядок зчитування триплетів усього ланцюга нуклеотидів. 6) У коді є "розділові знаки", тобто триплети, які не несуть генетичної інформації і лише відокремлюють одні гени від інших. Їх називають спейсерами (від англ. спейс - простір). У генетичному коді також є триплети (УАА, УАГ, УГА), кожен з яких означає припинення синтезу одного поліпептидного ланцюга (так звані стоп-кодони), а триплет АУГ визначає місце початку синтезу наступного. 3. Етапи біосинтезу білка. Механізм процесу біосинтезу білків з'ясовано у 50-х роках XX сторіччя. На основі робіт багатьох вчених була висунута матрична теорія синтезу білка. Згідно цієї теорії, синтез білка - дуже складний багатоступінчастий процес. У ньому беруть участь ДНК, різні види РНК і різноманітні ферменти. Кожний білок синтезується на своїй особливій матриці і для цього потрібна своя особлива іРНК. Одна молекула іРНК визначає послідовність нуклеотидів з відрізка ДНК, рівного одному гену, і переносить цю інформацію на послідовність розташування амінокислот у поліпептидному ланцюгу одного білка. Етапи біосинтезу білка: І. Транскрипція. Транскрипція - це синтез молекули іРНК на одному з ланцюгів ДНК, який здійснюється за принципом комплементарності. При цьому кожному з триплетів гену ДНК у іРНК відповідає послідовність з трьох нуклеотидів, які комплементарні нуклеотидам триплету та мають назву кодон. Тобто певному триплету ДНК відповідає кодон іРНК (триплет ДНК - кодон іРНК). ІІ.Активація амінокислот та приєднання їх до тРНК. Амінокислоти надходять до рибосоми не самостійно, а у супроводі тРНК. Біля верхівки "листка конюшини" тРНК розташовані три нуклеотиди, що визначають, яку саме амінокислоту слід транспортувати. Ця послідовність нуклеотидів у складі тРНК має назву антикодон, тому що вона комплементарна одному з кодонів іРНК (триплет ДНК - кодон іРНК - антикодон тРНК). Особливий фермент "пізнає" антикодон і приєднує до основи молекули тРНК не яку-небудь, а певну, "свою" амінокислоту. У клітині є стільки ж різних типів тРНК, скільки типів кодонів, кодуючих амінокислоти. ІІІ. Трансляція. Трансляція (від лат. транслятіо- передача) - це процес переносу інформації про первинну структуру білка, яка міститься у вигляді послідовності нуклеотидів іРНК, далі у вигляді послідовності амінокислотних залишків молекули білка, що синтезується, який супроводжується ототожненням кожної амінокислоти синтезуємого білка з певним кодоном іРНК через посередництво антикодону тРНК. IV. Утворення вторинної, третинної та четвертинної структур молекули білка. На заключному етапі синтезований білок набуває своєї природної просторової структури. За участю відповідних ферментів від нього відщеплюються зайві амінокислотні залишки, вводяться небілкові фосфатні, карбоксильні та інші групи, приєднуються вуглеводи, ліпіди тощо. Лише після цих процесів молекула білка стає функціонально активною. Всі процеси синтезу білкової молекули здійснюються при участі спеціальних ферментів. А також, що кожна з цих реакцій потребує витрат енергії, джерелом якої є реакції розщеплення АТФ.
Тема: Хемосинтез. Фотосинтез 1. Особливості обміну речовин та енергії у різних груп організмів. Автотрофна асиміляція Неорганічні речовини Фотосинтез Прості органічні сполуки (СО2, Н2О та ін.) Хемосинтез (амінокислоти, моносахариди та ін.)
Біосинтез Макромолекули тіла (білки, ліпіди та ін.) Гетеротрофна асиміляція Органічні речовини Травлення Прості органічні сполуки (білки, вуглеводи та ін.) (амінокислоти, моносахариди та ін.)
Біосинтез Макромолекули тіла (білки, ліпіди та ін.) 2. Хемосинтез . Хемосинтез був відкритий у 1887 році видатним російським мікробіологом С.М.Виноградським. Хемосинтез - це процес утворення органічних речовин за рахунок хімічної енергії перетворення неорганічних сполук. До хемотрофних організмів належать деякі групи бактерій: нітрифікуючи, сіркобактерії, залізобактерії тощо. Нітрифікуючи бактерії: нітрити (солі HNO2) аміак (NH3) нітрати (солі НNO3) синтез Залізобактерії: Fe2+ Fe3+ Е АТФ органічних Сіркобактерії: сполук 2Н2S + О2 = 2Н2О + 2S 2Н2S + 2Н2О + ЗО2 = 2Н2SО4 Фотосинтез - це процес утворення органічних сполук із неорганічних завдяки перетворенню світлової енергії в енергію хімічних зв'язків. До фототрофних організмів належать зелені рослини (вищі рослини, водорості), деякі тварини (рослинні джгутикові), а також деякі прокаріоти - ціанобактерії, пурпурові та зелені сіркобактерії. Ведучу роль у процесі фотосинтезу відіграють фотосинтетичні пігменти. Хлорофіли є основними з фотосинтетичних пігментів. За хімічною природою це складні ефіри дикарбонової хлорофілінової кислоти з двома спиртами: металовим і фітоловим. За своєю структурою вони нагадують гем гемоглобіну, але в цих сполуках замість заліза присутній магній. У цих молекул плоска квадратна "голова" (хлорофілін) і довгий "хвіст" (фітол). Більшість фотосинтезуючих організмів має різні хлорофіли: хлорофіл а (обов'язковий), хлорофіл b (у зелених рослин), хлорофіл c (у діатомових і бурих водоростей), хлорофіл d (у червоних водоростей) (дивись додаток 10). Зелені й пурпурові бактерії містять особливі бактеріохлорофіли. Крім хлорофілів у хлоропластах є жовті, червоні пігменти (каротин і ксантофіл). У клітинах вищих рослин фотосинтез відбувається в спеціальних органелах -хлоропластах. В основі фотосинтезу лежить окиснювально-відновний процес, пов'язаний із перенесенням електронів від сполук постачальників електронів (донорів) до сполук, які їх сприймають (акцепторів), з утворенням вуглеводів і виділенням в атмосферу молекулярного кисню. Світлова енергія перетворюється на енергію синтезованих органічних сполук (вуглеводів) в особливих структурах - реакційних центрах, що містять хлорофіл а. Процес фотосинтезу відбувається в дві фази - світлову та темнову. 1) Світлова фаза фотосинтезу. Світлова фаза відбувається в мембранах тилакоїдів хлоропластів за наявності світла та участі хлорофілу, білків-переносників, АТФ-синтетази (схема світлової фази фотосинтезу).
Схема світлової фази фотосинтезу
е- е- е- е- е- е- е- е- е- е- е- е- е- е- е- е- 2Н+ + 4е- + НАДФ+ = НАДФ.Н2
2) Темнова фаза фотосинтезу. Реакції темпової фази фотосинтезу перебігають у внутрішньому середовищі (матриксі) хлоропластів як на світлі, так і за його відсутності. В ході реакцій темнової фази СО2 відновлюється до глюкози завдяки енергії, що вивільнюється при розщепленні АТФ, та за рахунок відновленого НАДФ. Сполукою, яка сприймає атмосферний СО2, є рибульозобіфосфат - РБФ (п'ятивуглецевий цукор, сполучений із двома залишками фосфорної кислоти). Процес приєднання СО2 каталізує фермент карбоксилаза. Внаслідок складних і багатоступеневих хімічних реакцій, кожну з яких каталізує свій специфічний фермент, утворюється кінцевий продукт фотосинтезу - глюкоза, а також відновлюється акцептор СО2 - рибульозобіфосфат. З глюкози в клітинах рослин можуть синтезуватися полісахариди - крохмаль, целюлоза тощо (схема темнової фази фотосинтезу). Підсумкове рівняння процесу фотосинтезу у зелених рослин має такий вигляд: 6СО2 + 6Н2О = С6Н12О6 + 6О2
Схема темнової фази фотосинтезу Цикл Кальвіна: 6РБФ + 6СО2 +6Н2О
12ФГК 12АТФ 12ДФГК 12НАДФ.Н2
10ФГА С6Н12О6 Підсумкове рівняння процесу фотосинтезу: 6СО2 + 6Н2О = С6Н12О6 + 6О2 глюкоза
3. Значення фотосинтезу для біосфери (самостійна робота з текстом). Значення фотосинтезу для біосфери важко переоцінити. Саме завдяки цьому процесові вловлюється світлова енергія Сонця. Фотосинтезуючі організми перетворюють її на енергію хімічних зв'язків синтезованих вуглеводів, а потім по ланцюгах живлення вона передається гетеротрофним організмам. Отже, не буде перебільшенням вважати, що саме завдяки фотосинтезу можливе існування біосфери. Зелені рослини та ціанобактерії, поглинаючи вуглекислий газ і виділяючи кисень, впливають на газовий склад атмосфери. Увесь атмосферний кисень має фотосинтетичне походження. Щорічно завдяки фотосинтезу на Землі синтезується близько 150 млрд. тонн органічної речовини і виділяється понад 200 млрд. тонн вільного кисню, який не тільки забезпечує дихання організмів, але й захищає все живе на Землі від згубного впливу короткохвильових ультрафіолетових космічних променів (озоновий екран атмосфери). Але загалом процес фотосинтезу малоефективний. У синтезовану органічну речовину переводиться лише 1-2% сонячної енергії. Це пояснюється неповним поглинанням світла рослинами, а також тим, що частина сонячного світла відбивається від поверхні Землі назад у космос, поглинається атмосферою тощо. Продуктивність процесу фотосинтезу зростає за умов кращого водопостачання рослин, їхнього оптимального освітлення, забезпечення вуглекислим газом, завдяки селекції сортів, спрямованій на підвищення ефективності фотосинтезу Розділ ІІІ. Організмовий рівень організації життя Тема 1. Неклітинні форми життя і одноклітинні організми Тема: Неклітинні форми життя 1. Відкриття вірусів. Віруси вивчає наука вірусологія. Відкриття цих організмів належить Д.І. Івановському - вченому, який тривалий час працював в Україні, зокрема в Нікітському ботанічному саду (Крим). Досліджуючи мозаїчне захворювання тютюну, він за допомогою мікробіологічних фільтрів намагався виділити його збудника. Але навіть фільтри з найдрібнішим діаметром пор не могли його затримати, і профільтрований сік хворої рослини спричинював зараження здорових. Таким чином, у 1892 році Д.І. Івановський довів існування нової, невідомої досі науці, групи збудників захворювань, які згодом назвали віруси (від лат. вірус - отрута).
2. Місце вірусів у системі органічного світу. За сучасними уявленнями віруси як внутрішньоклітинні паразити складають окреме царство живої природи - царство Віра. Від представників інших царств (бактерій, рослин, грибів і тварин) віруси відрізняються тим, що не мають клітинної будови. Поза клітиною-хазяїном вони не проявляють ніяких властивостей живого, лише взаємодіючи із синтезуючими апаратами клітин-хазяїв, віруси здатні проявляти свою життєдіяльність - розмножуватися. 3. Особливості будови та процесів життєдіяльності вірусів. Вірусні частинки мають розміри від 15 до сотень нанометрів (найбільший серед вірусів тварин і людини збудник природної віспи - до 450 нм), іноді - до 2000 нм (деякі віруси рослин). Вірусні частинки складаються з молекули нуклеїнової кислоти (ДНК чи РНК) та оболонки, яка її оточує. За будовою вірусні нуклеїнові кислоти помітно відрізняються від таких клітинних організмів. Вірусні ДНК чи РНК можуть мати вигляд одноланцюгових або дволанцюгових спіралей, що утворюють видовжені (лінійні) чи кільцеві форми, спіралі можуть скручуватися у вторинні витки тощо. Залежно від структури та хімічного складу оболонки віруси поділяються на прості та складні. Оболонка простих вірусів складається лише з білкових субодиниць, які утворюють упорядковані спіральні або багатогранні структури (наприклад, вірус тютюнової мозаїки). Вони можуть мати паличкоподібну, нитчасту або кулясту форми тощо. Складні віруси, на відміну від простих, можуть бути додатково вкритими ліпопротеїдною поверхневою мембраною, яка становить собою частину плазматичної мембрани клітини-хазяїна. Життєвий цикл вірусу складається з двох фаз: 1) позаклітинної, на якій він не проявляє жодних ознак життєдіяльності (фаза вірусних частинок) та деякий час не втрачає здатності до зараження; 2) внутрішньоклітинної (утворення комплексу вірус-клітина під час розмноження вірусів). 4. Механізми проникнення вірусу до клітини-хазяїна. Проникнення вірусу в клітину-хазяїна починається із взаємодії вірусної частинки з поверхнею клітини, на якій є особливі рецепторні ділянки. Оболонка вірусу має відповідні прикріпні білки, що «впізнають» ці ділянки. Саме цим забезпечується висока специфічність вірусів стосовно клітин-хазяїв: віруси вражають лише певний тип клітин певного виду організмів. Шляхи проникнення вірусу до клітини-хазяїна: 1) вірусні оболонки зливаються з клітинною мембраною (як у вірусу грипу); 2) вірусна частинка потрапляє в клітину шляхом піноцитозу, після чого ферменти клітини-хазяїна розщеплюють її оболонку, звільняючи нуклеїнову кислоту (вірус поліомієліту тварин); 3) у рослинні клітини віруси можуть проникати через пошкоджені ділянки клітинної стінки; 4) механізм проникнення бактеріофагів у клітину-хазяїна. Механізм проникнення бактеріофагів у клітину-хазяїна. Бактеріофаг має досить складну будову: він складається з розширеної частини - головки, в який міститься нуклеїнова кислота (ДНК), відростка у вигляді чохла, що нагадує розтягнену пружину, всередині якого проходить порожній стрижень, та хвостових ниток, за допомогою яких вірус сполучається з рецепторними ділянками клітини-хазяїна. Після прикріплення до поверхні бактеріальної клітини бактеріофаг унаслідок скорочення чохла наче впорскує молекулу нуклеїнової кислоти через порожній стрижень усередину клітини. Порожня оболонка бактеріофага залишається зовні клітини-хазяїна. 5. Розмноження вірусів. Після проникнення вірусу в клітину-хазяїна його нуклеїнова кислота передає спадкову інформацію про вірусні білки в білоксинтезуючий апарат клітини. У деяких вірусів вірусна частинка містить іРНК, яка відразу ж сполучається з рибосомами хазяїна і спричинює синтез вірусних білків, у інших іРНК синтезується на РНК чи ДНК вірусу. Деякі РНК-вмісні віруси здатні викликати синтез ДНК (явище зворотної реплікації) в ядрі клітини, а остання, в свою чергу, синтезує вірусну іРНК. Особливим випадком є вбудова вірусної ДНК у ДНК клітини-хазяїна. При цьому не відбувається незалежного синтезу вірусних білків, а лише в комплексі з білками клітини. У подальшому віруси за допомогою продуктів власної життєдіяльності пригнічують синтез білків клітини-хазяїна і стимулюють синтез власних білків, використовуючи білоксинтезуючий апарат клітини-хазяїна та її енергетичні ресурси. Водночас молекули нуклеїнової кислоти вірусу подвоюються. Завершується процес розмноження вірусів у клітині-хазяїні складанням вірусних частинок, тобто вірусна нуклеїнова кислота «одягається» в оболонку із синтезованого клітиною вірусного білка. Звільняються вірусні частинки з клітини-хазяїна по-різному: 1) часто клітина-хазяїн руйнується, звільняючи вірусні частинки; 2 ) у багатьох складних вірусів їхні частинки можуть виходити з клітини, «відбруньковуючись» від неї назовні. 6. Роль вірусів у природі та житті людини. Завдання. Прочитати текст «Роль вірусів у природі та житті людини» та відповісти на питання: 1) Що таке інфекція? Які є різновиди інфекції? 2) Якими шляхами віруси можуть проникати в організм хазяїна? 3) Які ви знаєте захисні реакції організмів у відповідь на проникнення вірусів? 4) Які захворювання людини і свійських тварин спричинюють віруси? 5) Як можна уникнути вірусної інфекції? 6) Як людина використовує віруси для своїх потреб? Роль вірусів у природі та житті людини 1. Вплив вірусів на організм хазяїна. Проникнення вірусу в клітину спричинює в ній інфекційні процеси. Інфекцією називають комплекс процесів, які відбуваються під час взаємодії інфекційного агента (бактерії, гриби, віруси) з організмом хазяїна. Подібні явища, спричинені паразитичними тваринами (найпростішими, червами тощо), називають інвазією. Розрізняють гострі та хронічні вірусні інфекції. Внаслідок гострої інфекції після утворення нового покоління вірусів клітина, як правило, гине. За хронічної інфекції нові покоління вірусних частинок утворюються в клітині протягом тривалого часу. Періоди продукування вірусних частинок можуть чергуватися з періодами гальмування цих процесів. Інколи материнська клітина може передавати вірусну інфекцію дочірнім. При латентній (прихованій) інфекції вірусні частинки не виділяються в навколишнє середовище і збудника не завжди можна виявити в клітині (віруси герпесу, ВІЛу тощо), але під впливом активуючих факторів латентна інфекція може перейти або в гостру, або в хронічну. Трапляється і змішана вірусна інфекція, коли клітину вражають два або більша кількість видів вірусів. При цьому можлива взаємодія різних видів вірусів, унаслідок якої один із них пригнічує або, навпаки, підсилює розмноження іншого. Проникнення вірусу в клітину може призвести до структурних та функціональних змін у ній унаслідок механічного пошкодження клітинних структур. Наприклад, якщо зруйновано лізосоми, ферменти, які звільнилися, можуть почати перетравлювати вміст самої клітини. В деяких випадках віруси можуть спричинити неконтрольований поділ клітин і перетворення їх на ракові (онкогенні віруси, віруси герпесу, папілом тощо). 2. Шляхи проникнення вірусів в організм хазяїна бувають різними. Віруси передаються від хворого організму до здорового повітряно-краплинним шляхом, тобто через органи дихання (віруси грипу, віспи, кору тощо). В інших випадках віруси проникають в організм хазяїна з їжею (наприклад, вірус ентериту собак або збудник ящуру, який може передаватись із сирим молоком ураженої корови), через пошкоджену чи непошкоджену шкіру (віруси сказу, віспи, герпесу, папіломи тощо ), під час переливання крові, хірургічних або стоматологічних операцій (збудники СНІДу, гепатиту В тощо), статевим шляхом (віруси герпесу, папіломи ВІЛу тощо). Проникнення вірусу в організм хазяїна можливе і за участю переносників, якими можуть бути різноманітні членистоногі (комахи та кліщі). Через укус зі слиною кровосисних членистоногих у тіло людини потрапляють віруси кліщового енцефаліту (передають іксодові кліщі), жовтої пропасниці (немалярійні комарі) тощо. Віруси, які передаються людині та хребетним тваринам за участю членистоногих, називаються арбовірусами. За участю комах (попелиць, цикад), круглих червів (нематод) можуть передаватись і різноманітні віруси рослин. Віруси, які проникли в організм хазяїна, поширюються по кровоносній, лімфатичній (віруси кору, віспи, кліщового енцефаліту, ВІЛу тощо) чи по нервовій (віруси сказу та поліомієліту) системах. Віруси рослин - по провідних тканинах хазяїв. 3. Захисні реакції організму проти вірусних інфекцій. Організм людини, тварин і рослин має захисні механізми, здатні протистояти вірусним інфекціям. Так, у відповідь на проникнення вірусів, які розпізнаються як антигени, в організмі людини і тварин виробляються антитіла білкової природи (імуноглобуліни). Вони здатні зв'язувати антигени у комплекс антиген-антитіло, який знешкоджується імунною системою. У результаті такої взаємодії змінюється структура вірусної оболонки або антитіла блокують її прикріпні білки, унаслідок чого вони не можуть зв'язуватись з рецепторними ділянками плазматичної мембрани клітин. У відповідь на проникнення вірусу в клітину можуть вироблятись захисні білки - інтерферони, що пригнічують розмноження вірусів. На відміну від антитіл, інтерферони не мають специфічності по відношенню до певних видів вірусів. їх застосовують у лікуванні та профілактиці багатьох вірусних захворювань. Крім гуморального імунітету, який здійснюється завдяки виробленню антитіл, є й клітинний, що ґрунтується на здатності певних видів лейкоцитів розпізнавати інфіковані вірусами клітини й знищувати їх. У гемолімфі членистоногих знайдено особливі ферменти, які розкладають вірусні частинки. В одних випадках організм, який переніс вірусну інфекцію, в подальшому зберігає несприйнятність до її збудника (віспа, кір, ентерит і чумка собак тощо). В інших випадках (грип) можливі й повторні захворювання. Вірус імунодефіциту людини (ВІЛ) пригнічує імунну систему хазяїна, знищуючи лімфоцити, і тому людина через певний час гине від того, що її організм не може протистояти іншим інфекційним захворюванням. На жаль, ефективних засобів лікування цієї смертельно небезпечної хвороби досі не винайдено. Іноді вірус може зберігатись в організмі, не спричинюючи захворювання. Такі організми називають носіями, вони беруть участь у поширенні вірусних інфекцій. 4. Значення вірусів у природі та житті людини. Віруси спричинюють різноманітні, часто масові (епідемічні) та дуже небезпечні захворювання людини, тварин і рослин, чим завдають їм значної шкоди. У людини, наприклад, віруси вражають органи дихання (грип, аденоінфекції тощо), травну (гастроентерити, гепатити) чи нервову (поліомієліт, енцефаліти) системи, шкіру та слизові оболонки (кір, герпес, папіломи, вітряна віспа), пригнічують імунні реакції організму (СНІД), призводять до ракових захворювань. У свійських тварин віруси спричинюють ящур, чумку собак, чуму курей та багато інших захворювань. Віруси спричинюють і різноманітні захворювання культурних рослин: мозаїчність, плямистість, некрози, пухлини тощо. Для того, щоб уникнути вірусних захворювань, необхідно дотримуватись певних правил. Хворих людей та свійських тварин слід ізолювати від здорових до їхнього одужання (карантин); їх потрібно лікувати за допомогою антивірусних препаратів; варто знищувати кровосисних та паразитичних членистоногих - переносників вірусних захворювань. Особливе значення в боротьбі з вірусними захворюваннями має профілактичне щеплення, у результаті якого в організмі виробляється імунітет до певного виду захворювань. Завдяки профілактичним щепленням вдалося перемогти такі небезпечні захворювання людини, як віспу, поліомієліт. Прищеплюють і свійських тварин: наприклад, собак двічі (до зміни зубів і після неї) — проти чумки, парвовірусного ентериту тощо. Роль вірусів у природі полягає у регуляції чисельності своїх хазяїв. Людина використовує віруси у біологічному методі боротьби зі шкідливими видами (личинками кровосисних комарів, шовкопряда-недопарки тощо). Наприклад, проблему масового розмноження кролів в Австралії, що загрожувало виснаженню пасовищ, вдалося розв'язати за допомогою вірусу, який ефективно знизив чисельність цих тварин. Застосовуючи вірус проти шкідливого виду, треба попередньо переконатися, чи не вражатиме він й інші організми. Віруси використовують і в генетичній інженерії: за їхньою допомогою певний ген, виділений з іншого організму або синтезований штучно, можна переносити в клітини бактерій. Так забезпечується синтез речовин, необхідних людині (наприклад, гормону інсуліну для лікування цукрового діабету, захисних білків-інтерферонів). Учені вважають, що віруси відіграють певну роль і в еволюції прокаріот, оскільки можуть передавати спадкову інформацію від одних особин цих організмів до інших, як у межах одного виду, так і між різними, вбудовуючись у спадковий матеріал клітини-хазяїна. Тема: Особливості організації і життєдіяльності прокаріотів Прокаріоти - окреме надцарство організмів, до якого належать бактерії та ціанобактерії (синьо-зелені водорості). 1. Особливості будови клітин бактерій. Бактерії (від грец. βακτήριον — паличка) — одна з основних найпоширеніших груп живих організмів. Вони присутні у ґрунті, воді, повітрі та як симбіонти у інших організмах. Розміри бактерій: довжина клітини коливається в межах від 1-30 мкм (рідко більше), ширина — 0,2-1 мкм. За формою бактерії поділяють на коки, або кулясті; палички (бацили), що мають форму циліндра; вібріони, що мають форму коми; спірили — спірально вигнуті палички. Деякі бактерії мають здатність рухатись за допомогою джгутиків, які бувають більшими за саму клітину і є тоненькими виростами цитоплазми. Кількість джгутиків у різних видів неоднакова (один, два і більше). Поверхневий апарат бактерії складається з плазматичної мембрани, клітинної стінки, іноді - ще й слизової капсули. За структурою клітинної стінки бактерії можуть бути розділені на дві групи: грампозитивні та грамнегативні, що визначається фарбуванням за Грамом (у перших клітинна стінка забарвлюється специфічними барвниками, а у других – ні). Грампозитивні бактерії мають клітинну стінку, яка складається з шару пептидогліканів (муреїн), тоді як грамнегативні бактерії мають також зовнішню мембрану окрім тонкого шару пептидогліканів. На поверхні, поза шаром пептидоглікану або зовнішньою мембраною, часто розташовується білковий шар. Цей шар забезпечує хімічний і фізичний захист поверхні клітини і може служити макромолекулярним бар'єром. Під плазматичною мембраною знаходиться цитоплазма клітини. Цитоплазма бактерій містить включення, рибосоми, велику кількість мембранних структур. ДНК бактерій знаходиться в особливій ядерній зоні клітини, яку називають нуклеоідом. 2. Особливості процесів життєдіяльності бактерій. Дихання. За відношенням до кисню бактерії поділяють на дві групи: аероби і анаероби. Аероби використовують для дихання вільний кисень атмосфери. Анаероби ростуть і розмножуються в середовищі без кисню. Вони дістають енергію в процесі анаеробного розщеплення органічних речовин, накопичуючи різні проміжні продукти — спирт, молочну кислоту, гліцерин та інші речовини. Живлення. За характером живлення бактерії поділяють на г етеротрофні і автотрофні. Гетеротрофні бактерії поділяють на сапрофітів і симбіонтів. Бактеріі сапрофіти живляться органічними рештками відмерлих рослин і тварин, продуктами харчування людини. Вони спричинюють гниття і бродіння (ферментацію) органічних речовин. Бактерії-паразити живуть за рахунок живих організмів. Одні з них — хвороботворні і можуть спричинити захворювання тварин і людини (чуму, тиф, туберкульоз, перитоніт, менінгіт, ангіну, ботулізм, газову гангрену та ін.), інші є причиною хвороб рослин. Деякі гетеротрофні бактеріїв процесі еволюції виробили здатність до симбіозу (мутуалізму) з вищими рослинами. Це, наприклад, азотфіксуючі бактерії, які живуть на коренях бобових рослин, — бульбочкові бактерії. Вони поглинають азот з ґрунту й повітря і перетворюють його на сполуки, доступні для використання бобовими рослинами, які, в свою чергу, постачають бактеріям вуглеводи та мінеральні солі. Автотрофні бактерії — це бактерії, що можуть синтезувати органічні речовини з неорганічних у результаті фотосинтезу (фототрофи) або хемосинтезу (хемотрофи). До фототрофних належать пурпурові й зелені сіркобактерії, які синтезують складові частини свого тіла з мінеральних речовин, а енергію використовують світлову. Хемотрофні бактерії живляться за допомогою хемосинтезу, оскільки органічні речовини синтезуються з неорганічних за рахунок енергії хімічних реакцій. До них належать нітрифікуючи, залізо і сіркобактерії. Розмноження. Бактерії розмножуються, як правило, безстатевим шляхом — поділом материнської клітини на дві дочірні. Поділ відбувається дуже швидко і йому передує реплікація ДНК. За сприятливих умов деякі бактерії діляться кожні 20—30 хвилин. У бактерій відомий і статевий процес — кон'югація (від лат. кон'югатіо — сполучення), коли дві клітини обмінюються спадковою інформацією (у вигляді фрагментів молекули ДНК) через цитоплазматичний місток, що виникає на певний час. Це явище підвищує спадкову мінливість. Спороутворення. За несприятливих умов (нестача їжі, погодні умови, отруєння середовища продуктами життєдіяльності бактерій) багато бактерій здатні стискатися, втрачати воду і переходити в стан спокою до настання сприятливих умов. Деякі види бактерій за несприятливих умов формують спори, які характеризуються значною стійкістю. Ці форми бактерій витримують тривале кип’ятіння, висушування, заморожування, дію різних хімічних речовин. 3. Особливості будови і процесів життєдіяльності ціанобактерій. Ціанобактерії (лат. Cyanobacteria, — синьо-зелений) — значна група великих грамнегативних еубактерій, здатних до фотосинтезу, який супроводжується виділенням кисню. Ціанобактерії найбільш близькі до найдавніших мікроорганізмів, залишки яких (строматоліти, вік більш 3,5 млрд. років) виявлені на Землі. Ціанобактеріїдуже поширені в природі. Існують морські і прісноводні, ґрунтові види, учасники симбіозів (наприклад, у лишайників). Ціанобактеріїскладають значну частку океанічного фітопланктону. Серед ціанобактерій зустрічаютьсяодноклітинні, нитчасті і колоніальні форми. Розмір ціанобактерій коливається від 0,2 мкм до декількох сантиметрів. Ціанобактерії відрізняються здатністю адаптувати склад фотосинтетичних пігментів до спектрального складу світла, тому їхній колір варіює від зеленого до темно-синього. Будова клітини ціанобактерії подібна до будови клітини бактерії. Але в клітинах ціанобактерій немає органел руху і виявлені хроматофори — кулясті мембранні структури, в яких знаходяться фотосинтетичні пігменти. Основним способом розмноження є поділ в одній чи декількох площинах, множинний поділ. Життєвий цикл в одноклітинних форм при оптимальних умовах росту коливається у межах 6—12 годин. Для ціанобактерій притаманне сполучення двох важкопоєднуваних процесів: фотосинтетичної продукції кисню і фіксації атмосферного азоту. Ціанобактерії володіють повноцінним фотосинтетичним апаратом, характерним для кисневиділяючих фотосинтетиків. Кінцевим акцептором електронів служить ферредоксин, донором електронів — вода, що розщеплюється в системі окиснювання води, аналогічній системі вищих рослин. Фотосинтетичні пігменти представлені фікобілінами (як і в червоних водоростей). При відключенні фотосинтетичних пігментів ціанобактерії здатні до використання інших, ніж вода, екзогенних донорів електронів: відновлених з'єднань сірки, органічних сполук. Однак ефективність такого шляху фотосинтезу невелика, і він використовується переважно для переживання несприятливих умов. Накопичена енергія використовується в темнових процесах фотосинтезу для синтезу органічних речовин з атмосферного CO2. Азотфіксація забезпечується ферментом нітрогеназой, яких відрізняється високою чутливістю до молекулярного кисню. Оскільки кисень виділяється при фотосинтезі, в еволюції ціанобактерій реалізовані дві стратегії: просторового і тимчасового роз'єднання цих процесів. В одноклітинних ціанобактерій пік фотосинтетичної активності спостерігається у світлий, а пік нитрогеназної активності — у темний час доби. У нитчастих ціанобактерій процес азотфіксації локалізований у спеціалізованих диференційованих клітинах — гетероцистах, що відрізняються товстими покривами, що перешкоджають проникненню кисню (у середовищі колонії може нараховуватися 5-15 % гетероцист). Гетероцисти одержують органічні речовини від фотосинтезуючих членів колонії. 4. Роль бактерій і ціанобактерій у природі і житті людини. Важлива роль багатьох видів бактерій у процесах гниття та різних типів бродіння, тобто у виконанні санітарної ролі на Землі. Бактерії також мають велике значення у кругообігу вуглецю, кисню, водню, азоту, фосфору, сірки, кальцію та інших елементів. Багато видів бактерій сприяють активній фіксації атмосферного азоту і переводять його в органічну форму, що підвищує родючість ґрунтів. Велике значення мають бактерії, що розкладають целюлозу й пектинові речовини, які є основним джерелом вуглецю для життєдіяльності мікроорганізмів ґрунту. Сульфатредукуючі бактерії беруть участь в утворенні нафти і сірководню в лікувальних грязях, грунтах і морях. Так, насичений сірководнем шар води в Чорному морі є результатом життєдіяльності сульфатредукуючих бактерій. Діяльність цих бактерій у грунтах призводить до утворення соди і содового засолювання ґрунтів. Сульфатредукуючі бактерії переводять поживні речовини в грунтах рисових плантацій у форму, доступну для коренів цієї культури. Ці бактерії можуть спричинювати корозію металевих підземних і підводних споруд. Бактеріальні препарати успішно використовують для боротьби з багатьма видами комах шкідників (кукурудзяним метеликом та ін.). Багато видів бактерій використовують у різних галузях промисловості для добування ацетону, етилового й бутилового спиртів, оцтової кислоти, ферментів, гормонів, вітамінів, антибіотиків, білково-вітамінних препаратів тощо. Завдяки успіхам генної інженерії нині з'явилась можливість широко використовувати кишкову паличку для вироблення інсуліну, інтерферону, а інші бактерії — для одержання кормового й харчового білків. Без бактерій неможливі процеси дублення шкіри, сушіння листків тютюну, виготовлення шовку, каучуку, оброблення какао, кави, мочіння конопель, льону та інших лубоволокнистих рослин, квашення капусти, очищення води, вилужування металів тощо. Важливу роль у природі і житті людини відіграють і ціанобактерії. Ціанобактерії є «творцями» сучасної кисневовмісної атмосфери на Землі. В даний час, будучи значної складової океанічного планктону, ціанобактерії знаходяться на початку більшої частини харчових ланцюгів і виробляють значну частина кисню. Ціанобактерії є головною причиною, яка призводить до цвітіння води, що викликає масові замори риби й отруєння тварин і людей. Ціанобактерії є найважливішими об'єктами досліджень у біології. У Південній Америці і Китаї бактерії родів Спіруліна і Носток використовуються в їжу (їх висушують і готують борошно). Їм приписують цілющі й оздоровлюючі властивості. Розглядається можливість застосування ціанобактерій як масової кормової та харчової добавки.
Тема 2. Багатоклітинні організми Тема: Особливості організації і життєдіяльності багатоклітинних організмів 1. Будова і функції багатоклітинних організмів. Основними відмінностями одноклітинних і багатоклітинних організмів є те, що кожен одноклітинний організм виконує всі життєві функції за допомогою органел чи інших клітинних структур, а кожна з клітин багатоклітинних організмів пристосована до виконання лише однієї чи кількох певних функцій у складі певних тканин, які, в свою чергу, утворюють органи. У більшості багатоклітинних організмів клітини диференціюються за особливостями будови та функцій, утворюючи різні типи тканин, яківходять до складу органів. Орган — це певна структура організму, яка складається з тканин різних типів (як правило, переважає одна із них), займає в організмі певне положення, характеризується певними особливостями будови та виконує конкретні функції. Органи, що виконують спільні функції, утворюють в організмі тварин системи органів. Органи різних систем можуть тимчасово об'єднуватись для виконання певної функції, утворюючи функціональну систему органів Усі життєві процеси багатоклітинних організмів регулюються різноманітними біологічно активними речовинами, а у більшості тварин — ще й нервовою, ендокринною та імунною системами, які забезпечують його функціонування як єдиного цілого, зокрема зумовлюючи певні реакції на зміни умов зовнішнього та внутрішнього середовища. Органи багатоклітинних організмів поділяють на вегетативні та репродуктивні. Перші забезпечують обмін речовин, рух, ріст тощо, другі - спеціалізовані для здійснення процесів розмноження. Багатоклітинні тварини та рослини по-різному реалізують свої життєві функції, що насамперед залежить від способу живлення — гетеротрофного у тварин і автотрофного — у рослин. Рослини як автотрофні організми дістають необхідні для процесів біосинтезу речовини з ґрунту (розчини мінеральних солей) та повітря (вуглекислий газ), а необхідну енергію — від сонячного проміння. Рослини, на відміну від тварин, ведуть переважно прикріплений спосіб життя, у них відсутні нервова система, органи чуттів, спеціалізовані травна, дихальна, видільна системи тощо. Провідні тканини забезпечують транспорт води, розчинів мінеральних та органічних сполук, біологічно активних регуляторних речовин. Багатоклітинні тварини як гетеротрофи активно використовують різні джерела живлення, багаті на органічні сполуки. Їм притаманний активний спосіб життя Вони мають органи чуттів, нервову та опорно-рухову системи, структури для захоплення та перероблення їжі (травна система). У тварин є особливі системи ефективного транспорту кисню до окремих тканин і клітин (дихальна та кровоносна) та розподілу речовин між різними частинами організму (лімфатична і кровоносна системи, порожнинні рідини), а також спеціальні органи виділення. 2. Органи багатоклітинних рослин і грибів, регуляція їхніх функцій. Убагатоклітинних нижчих рослин (водоростей) і грибів, унаслідок відсутності диференційованих тканин, вегетативні органи чітко не виражені: тіло водоростей має назву слань (талом), а грибів — грибниця (міцелій), яка становить собою сукупність нитчастих утворів (гіфів). У вищих рослин, як вам відомо, вегетативними органами є пагін і корінь. Корінь — це вегетативний орган, який забезпечує закріплення рослини в ґрунті, всмоктування ґрунтового розчину солей та його транспорт до надземних частин рослини, а його видозміни - запасання поживних речовин. Різні види коренів (головний, бічні, додаткові) формують кореневу систему. Пагін складається з осьової частини (стебла), на якому розташовані листки та бруньки. На деяких пагонах, так званих репродуктивних, розміщені також генеративні органи (квітки). Стебло забезпечує взаємозв'язок органів рослини між собою, транспортує різні речовини, утворює і несе на собі листки та квітки. Листок виконує функції фотосинтезу, газообміну та випаровування води. Бруньки — це зачаткові пагони. Вегетативні бруньки складаються із зачаткового стебла з конусом наростання та зачаткових листочків. Генеративні -містять зачатки квіток або суцвіть. Органи нестатевого розмноження рослин і грибів називають спорангіями. Вони розміщені або поодиноко, або зібрані разом у складні структури (стробіли хвощів та плаунів, плодові тіла грибів). Органи статевого розмноження забезпечують утворення та дозрівання статевих клітин, процеси запліднення, а у насінних рослин (голо- та покритонасінних) — ще й запилення. Жіночі статеві органи вищих спорових рослин (мохів, папоротей, хвощів, плаунів) та голонасінних мають назву архегонії, а чоловічі — антеридії. У покритонасінних рослин органом насіннєвого розмноження є квітка. Функції рослинного організму (росту, розвитку тощо) регулюються за допомогою біологічно активних сполук - фітогормонів, які виробляються спеціалізованими тканинами вищих рослин. Біологічно активні сполуки фітонциди - речовини, які виділяються рослинами для пригнічення життєдіяльності інших видів рослин, бактерій, грибів тощо. Для захисту від фітофагів та паразитів рослини і гриби виділяють особливі отруйні речовини - алкалоїди, які можуть негативно впливати також і на інші види рослин.
3. Системи органів багатоклітинних тварин. Основними системами органів багатоклітинних тварин є опорно-рухова, травна, видільна, кровоносна, дихальна, нервова, ендокринна та статева. Травна система забезпечує надходження в організм поживних речовин, їхнє перероблення, всмоктування продуктів травлення та виведення з організму неперетравлених решток їжі. Травлення — сукупність процесів, що забезпечують механічне та хімічне (за участю травних ферментів) розщеплення їжі на компоненти, які можуть засвоюватись організмом та включатись в обмін речовин. Як правило, травлення починається в порожнині кишечнику (позаклітинне, або порожнинне травлення), а завершується в клітинах його епітелію (внутрішньоклітинне травлення). Ферменти, розміщені на поверхні епітеліальних клітин кишечнику, забезпечують мембранне, або пристінкове, травлення. Багато тварин вводять свої травні ферменти в тіло інших організмів або інші субстрати, а потім усмоктують перетравлені або напівперетравлені речовини в кишечник (позаорганізмове, або зовнішнє травлення). Загалом можна виділити два типи будови травної системи тварин: замкнену, або мішкоподібну, та наскрізну. Замкнена, або мішкоподібна, травна система складається з ротового отвору та замкненого кишечнику, неперетравлені рештки їжі при цьому викидаються через рот (плоскі черви). У більшості тварин розвинена наскрізна травна система, яка закінчується анальним отвором, через який неперетравлені рештки їжі виводяться назовні. Кровоносна система забезпечує транспорт та перерозподіл поживних речовин, газів, біологічно активних сполук, виведення продуктів обміну, захисні реакції організму. Кровоносна система складається із судин і центрального пульсуючого органа — серця (в організмів, позбавлених серця, наприклад кільчастих червів, ланцетників, його функції беруть на себе деякі судини, стінки яких мають добре розвинені м'язи). Кровоносна система може бути замкненою та незамкненою. Якщо кров протікає тільки по системі судин і не потрапляє в порожнину тіла, така кровоносна система має назву замкненої (кільчасті черви, більшість хордових тварин). Якщо ж судини відкриваються в порожнину тіла і частина кровообігу відбувається в проміжках між органами, кровоносна система називається незамкненою (членистоногі, молюски). При цьому кров змішується з порожнинною рідиною, утворюючи рідину подвійної природи - гемолімфу. Дихальна система забезпечує газообмін між організмом і довкіллям. Органи дихання у мешканців водойм (ракоподібні, молюски, риби тощо) - це зябра -тонкостінні вирости, які омиваються водою. Умовою газообміну через зябра є їхня зволоженість, тому на суходолі ці органи дихання функціонувати не можуть. У мешканців суходолу органи дихання, як правило, побудовані складніше. Вони можуть бути представлені трахеями (комахи, павукоподібні, багатоніжки), легеневими мішками (деякі павукоподібні), легенями (наземні хребетні тварини). Органи виділення (екскреції) — це спеціалізовані утвори, різноманітні за будовою та функціями (система видільних канальців плоских червів, метанефридії кільчастих червів, нирки молюсків, зелені залози річкового рака, мальпігієві судини наземних членистоногих, нирки хребетних тощо). Крім цих спеціалізованих органів, у виділенні продуктів обміну можуть брати участь й інші утвори (уссавців—потові та сальні залози, розташовані в шкірі, органи дихання, жирове тіло у комах). Опорно-рухова система забезпечує зміну положення тіла тварин, рухи окремих органів та організму в цілому. У різних груп червів опорно-рухова система представлена шкірно-м'язовим, мішком, та гідроскелетом (порожнинна або міжклітинна рідина, яка тисне на стінки тіла та підтримує його форму, а також може діяти як антагоніст м'язів, що згинають тіло). В інших тварин є твердий зовнішній (членистоногі) внутрішній (хордові) скелет, до певних елементів якого прикріплюються м'язи. Статева система тварин представлена статевими залозами, які продукують статеві клітини, та протоками, через які вони виводяться. Статева система виконує функцію розмноження. 4. Регуляція життєвих функцій організмів тварин. Регуляція життєвих функцій організмів здійснюється нервовою, ендокринною та імунною системами, які тісно взаємопов'язані. Нервова система регулює життєві функції за допомогою рефлексів. Вона дає змогу швидко сприймати зміни умов довкілля чи внутрішнього середовища організму і реагувати на них. Інформація у вигляді нервових імпульсів передається по певних шляхах, які дістали назву рефлекторних дуг. По них нервові імпульси передаються від рецепторів чи органів чуттів до певних ділянок нервової системи, де відбуваються їх аналіз та відповідна реакція, а від цих ділянок - до робочих органів. Нервові імпульси мають електричну природу, але в місцях контакту двох сусідніх нейронів (у синапсах) імпульси передаються хімічним шляхом за допомогою сполук-медіаторів. Ендокринна система здійснює гуморальну регуляцію. Ендокринні залози розвинені у більшості типів тварин. Вони не сполучаються просторово, їхня робота узгоджується або завдяки нервовій регуляції, або ж гормони, що виробляються одними залозами внутрішньої секреції, можуть впливати на роботу інших. Особливе місце в регуляції функцій організму належить нейрогормонам — біологічно активним речовинам, що виробляються особливими клітинами нервової тканини. Нейрогормони надходять у кров, міжклітинну або спинномозкову рідину і дистанційно впливають на роботу певних органів У хребетних тварин існує тісний зв'язок між гіпоталамусом та гіпофізом, так звана гіпоталамо-гіпофізарна система. Він полягає в тому, що синтезовані клітинами гіпоталамуса нейрогормони надходять по кровоносних судинах у передню частку гіпофіза. Там нейрогормони стимулюють або гальмують секрецію певних гормонів, які, у свою чергу, діють на інші залози внутрішньої секреції. Важливу роль у забезпеченні життєдіяльності організму відіграє імунітет. Імунітет — це здатність організму до захисту власної цілісності, несприйнятливості збудників певних захворювань. У створенні імунітету беруть участь неспецифічні та специфічні механізми. До неспецифічних механізмів імунітету належать бар'єрна функція епітелію шкіри та слизових оболонок внутрішніх органів, бактерицидна дія деяких ферментів, кислот, а також клітини різних тканин, здатні знешкоджувати сторонні частинки та мікроорганізми. Специфічні механізми імунітету забезпечуються наявністю імунної системи, яка розпізнає і знешкоджує чужорідні частинки і мікроорганізми, які сприймає як сторонні (антигени). До складу імунної системи організму хребетних тварин входять вилочкова залоза (тимус),червоний кістковий мозок, селезінка, лімфатичні вузли тощо. Імунна система забезпечує гуморальний (вироблення антитіл, які зв'язують певні антигени і таким чином їх знешкоджують) і клітинний (підвищення концентрації певних груп лімфоцитів, здатних вибірково фагоцитувати певні антигени) імунітет.
Тема: Розмноження організмів. 1. Розмноження організмів, його форми. Розмноження - це притаманна всім живим істотам властивість відтворення собі подібних, завдяки чому забезпечуються безперервність і спадковість життя.
Дата добавления: 2013-12-12; Просмотров: 1530; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |