Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Определения и основные сведения

Лекция 2. Минералы и горные породы. Процессы их образования, классификации, основные свойства.

Общие сведения о Земле

Инженерная геология (ИГ), ее задачи и содержание. ИГ как наука о рациональном использовании и охране геологической среды

Лекция 1. Введение. Общие сведения о Земле.

Инженерная геология сформировалась как наука геологического цикла в 20 – 30 годах ХХ века в связи с запросами различных видов строительства – транспортного, промышленного, энергетического и др. Были созданы специализированные изыскательские организации, инженерно-геологические исследования стали необходимой стадией проектирования и строительства. ИГ, включающая на этом этапе грунтоведение и инженерную геодинамику, стала изучаться в вузах. В последующие 1940…70-е гг. она интенсивно развивалась применительно к решению проблем строительства в сложных геологических условиях транспортных сооружений, крупных ГЭС и ТЭС, атомных электростанций и др. Содержание ИГ расширилось за счет обобщения закономерностей инженерно-геологических условий обширных территорий (регионов); региональная ИГ стала третьей составной частью инженерной геологии.

В настоящее время (с 1980-х гг.) инженерная геология рассматривается как наука о геологической среде (ГС), т.е. верхней толще земной коры, ее охране и рациональном использовании. Это обусловлено резким ростом нагрузки на природную среду по многим причинам: рост численности населения в целом, городского в особенности; энерговооруженности и производительных сил общества; масштабов возводимых сооружений и т.д. Соответственно возрастает нагрузка на геологическую среду и растет опасность ее реакций на критические техногенные воздействия. Примерами таких реакций являются «наведенные» землетрясения при заполнении больших водохранилищ и закачке воды в глубокие скважины; выбросы пород, газа в глубоких шахтах и рудниках, приводящие иногда к авариям с человеческими жертвами; подтопление грунтовыми водами и наоборот, истощение глубоких водоносных горизонтов и др. Особенно велик уровень техногенных воздействий в больших городах.

Для России с ее огромной территорией (17,08 млн км2) и разнообразием природных условий значение ИГ особенно велико для всех видов строительства, разработки месторождений полезных ископаемых, надежной эксплуатации сооружений.

Земля имеет сложную форму геоида, но упрощенно представляется шаром, слегка сплюснутым вдоль полюсов (относительное сжатие около 1:300) со средним радиусом 6371 км. Поэтому строение Земли можно характеризовать совокупностью внешних и внутренних геосфер. К внешним относятся атмосфера, гидросфера и биосфера – область распространения жизни, включая все ее формы до микроорганизмов и бактерий.

Внутренние геосферы – земная кора, литосфера, мантия и ядро (рис.1.1). Вся деятельность человека протекает в верхней толще земной коры (ЗК). В ней выделяют три слоя: осадочный, мощностью до 15 км, а в среднем 3…4 км; гранитный, до 35 км (в океанической ЗК он отсутствует); базальтовый. Мощность ЗК около 70 км, глубже до 2900 км идет мантия, затем ядро. Верхний слой мантии 4 состоит из твердых пород (литифицированная мантия), как и ЗК; вместе они называются литосферой. Установлено, что под литосферой на отдельных участках верхней мантии породы находятся в состоянии расплава (астеносфера 5). С этим связано проявление на Земле вулканической деятельности и разнообразных движений ЗК. Все геосферы взаимосвязаны: например, атмосферные явления влияют на изменения горных пород и характер земной поверхности (рельеф); процессы в литосфере и биосфере влияют на состав атмосферы и т.д.

Из сопоставления средних плотностей пород ЗК и Земли в целом (соответственно 2.7 и 5,52 т/куб.м.) следует, что к центру плотность вещества возрастает. Растут также давление и температура.

В породах ЗК установлены все химические элементы. Наиболее распространены кислород (46,8), кремний (27,3), алюминий (8,7); в скобках указаны массовые доли элемента (кларки). Далее идут железо (5,1), кальций (3,6), натрий и калий (по 2,6), магний (2,1), водород (1,0). На долю всех остальных приходится менее одного процента. Отсюда ясно, что в химическом составе пород ЗК будут преобладать перечисленные элементы.

Рис. 1.1. Внутренние геосферы

 

Из физических полей Земли большое значение имеют тепловое, гравитационное, магнитное; закономерности последних используются в геофизических методах, применяемых в инженерной геологии.

Тепловой режим Земли формируется за счет внешней энергии, в основном солнечной, и внутренней, связанной с процессами в мантии и ядре. На поверхности действует солнечное тепло, и соответственно имеют место колебания температуры – суточные, сезонные, годовые и вековые. На глубине 10…15 м они постепенно затухают, и далее располагается зона постоянных температур, примерно равных среднегодовой для данной местности. С глубины 40…50 м сказывается влияние внутренней энергии и температура растет. Количественно ее рост характеризуют указанием геотермической ступени (ГС) или геотермического градиента (ГГ). ГС – это расстояние в глубину, на котором температура увеличивается на один градус Цельсия. ГГ – это возрастание температуры на 100 метров глубины. Очевидно соотношение ГС = 100/ГГ. В среднем ГС равна 33 м, но в общем она меняется от 5 до 100 м. Например, для Москвы ГС = 59 м, для Петербурга только 20 м; различие объясняется более близким к поверхности для последнего расположением кристаллических пород и наличием в них глубоких разломов. Учет роста температуры с глубиной имеет непосредственное практическое значение при строительстве тоннелей, шахт, бурении скважин. Так, при проходке Северо-Муйского тоннеля на БАМе температура достигала 400, Симплонского тоннеля в Альпах (на глубине 2690м) - 500, что значительно осложняло строительство.

Земная кора состоит из горных пород, представляющих собой агрегаты, то есть соединения нескольких (иногда одного) минералов. Минералом называется природное образование, относительно однородное по внутреннему строению, химическому составу и физическим свойствам. Большая часть минералов имеет кристаллическое строение, когда составляющие их частицы – атомы, ионы – располагаются в определенном порядке, образуя кристаллическую решетку. Для отдельного кристалла это проявляется правильной формой многогранника – куба, призмы, октаэдра и др. Лишь некоторые минералы имеют некристаллическое, аморфное строение.

Обычной и наиболее важной формой существования минералов в ЗК являются горные породы. Более редки отдельные кристаллы или их сростки (друзы). Встречаются и другие формы: конкреции – округлые минеральные агрегаты радиально-лучистого строения; секреции – результат заполнения минералом пустот в горных породах с нарастанием его от стенок к центру; оолиты – мелкие сферические образования; натеки в виде желваков, почек, сталактитов и т.п.

Всего известно более трех тысяч минералов, но основную массу пород ЗК составляют несколько десятков наиболее распространенных минералов, называемых породообразующими. Знание их свойств и умение выделить их в конкретной породе имеют важное значение.

Минералы и горные породы образуются в ходе разнообразных процессов, протекающих в земной коре и на ее поверхности. По характеру энергии, порождающей процессы, они делятся на эндогенные, связанные с внутренней энергией Земли и экзогенные – с внешней, главным образом солнечной энергией. Основными эндогенными процессами минерало- и породообразования являются магматизм и метаморфизм. Магматизмом называется внедрение в толщу ЗК огненно-жидкого силикатного расплава (магмы) или излияние ее на земную поверхность в виде лавы с последующим остыванием и затвердеванием. Горные породы, составленные образующимися таким образом минералами, называются магматическими (МГП).

Метаморфизмом называются процессы изменения ранее возникших минералов и горных пород в новых условиях их существования, под действием высоких давления и температуры, а также химически активных жидкостей и газов. Образующиеся породы называются метаморфическими (ММГП).

Экзогенные минералы образуются на земной поверхности и на небольшой глубине вследствие преобразования эндогенных минералов, кристаллизации и осаждения солей из водных растворов, а также в результате жизнедеятельности животных и растительных организмов, накопления их остатков. Такой процесс минералообразования называется осадочным, а возникающие при этом горные породы называются осадочными (ОГП).

По химическому составу минералы подразделяются на 10 классов: силикаты (наиболее распространены минералы магматического происхождения - полевые шпаты ортоклазы и плагиоклазы, слюды, оливин, авгит, роговая обманка; метаморфического – тальк, хлорит, серпентин; осадочного – каолинит, монтмориллонит, гидрослюды), оксиды (кварц, корунд, халцедон, кремень), гидроксиды (лимонит, опал), карбонаты (кальцит, доломит), сульфиды (пирит), сульфаты (гипс, ангидрит), галоиды (галит, сильвин, флюорит), фосфаты (апатит), вольфраматы, самородные минералы; породообразующие минералы принадлежат к первым восьми классам.

Во многих случаях минерал можно определить по его физическим свойствам, к которым относятся: форма кристаллов; оптические свойства – цвет, блеск, прозрачность; спайность, то есть способность раскалываться или расщепляться с образованием гладких блестящих плоскостей; характер излома; плотность, твердость и др.

По плотности различают минералы легкие (r ≤2,5г/см3), тяжелые (r >= 4) и средней плотности при изменении r в указанных пределах. Для определения твердости минералов пользуются шкалой Мооса, в которой каждый последующий из приведенных эталонных минералов царапает предыдущий, т.е. превышает его по твердости на один балл: тальк, гипс, кальцит, флюорит, апатит, полевой шпат, кварц, топаз, корунд, алмаз. Последние три минерала относятся к редким, так что из перечисленных породообразующих минералов к твердым относятся полевой шпат (6) и кварц (7); к мягким тальк (1) и гипс (2); остальные имеют среднюю твердость.

Очень большое практическое значение имеет устойчивость минералов к выветриванию. В этом отношении они подразделяются на очень устойчивые – кварц, мусковит; устойчивые – ортоклаз, альбит, т.е. полевые шпаты с большим содержанием кремнекислоты (кислые); умеренно устойчивые – кислые плагиоклазы, авгит, роговая обманка, биотит и др.; малоустойчивые – основные плагиоклазы (с малым содержанием кремнекислоты), оливин, пирит. Некоторые другие сведения о влиянии минералов на строительные свойства горных пород будут приведены далее.

<== предыдущая лекция | следующая лекция ==>
Техногенные отложения. 44 | Магматические горные породы (МГП)
Поделиться с друзьями:


Дата добавления: 2013-12-12; Просмотров: 374; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.