КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Плоскостей проекций
Положение плоскости относительно Любая произвольно взятая в пространстве плоскость может занимать общее или частное положение. Плоскостью общего положения называется плоскость, которая не перпендикулярна и не параллельна ни к одной из плоскостей проекций (см. рис. 5.2). Все остальные плоскости относятся к плоскостям частного положения и подразделяются на проецирующие плоскости и плоскости уровня. Проецирующей называется плоскость, перпендикулярная к одной из плоскостей проекций. Например, горизонтально-проецирующая плоскость перпендикулярна к горизонтальной плоскости проекции П1 (рис. 5.3).
Рис. 5.3
Горизонтальные проекции всех геометрических объектов (точек, прямых, фигур), лежащих в этой плоскости, совпадают с горизонтальным следом 1. Угол β, который образуется между плоскостями Σ и П2, проецируется на П1 без искажения. Фронтальный след 2 перпендикулярен к оси x. Фронтально-проецирующая плоскость () перпендикулярна к фронтальной плоскости П2 (рис. 5.4). Фронтальные проекции всех геометрических объектов (точек, прямых, фигур), лежащих в этой плоскости, совпадают с фронтальным следом плоскости 2. Угол α, который образуется между заданной плоскостью и П1, проецируется на П2 без искажения. Горизонтальный след плоскости 1 перпендикулярен к оси x.
Рис. 5.4
Профильно - проецирующая плоскость Т (T1, T2) перпендикулярна к профильной плоскости проекции П3 (рис. 5.5).
а) б) Рис. 5.5 Профильные проекции всех геометрических объектов, лежащих в этой плоскости, совпадают с профильным следом плоскости Т3. Углы α и β, которые образуются между заданной плоскостью и плоскостями проекций П1 и П2 (угол α = углу наклона плоскости T к плоскости проекции П1; угол β = углу наклона плоскости Т к плоскости проекций П2), плоскость Т проецируются на плоскость П3 без искажений. Горизонтальный и фронтальный следы плоскости параллельны оси х. Профильно-проецирующая плоскость может проходить через ось x (рис. 5.6). Следы такой плоскости 1 ≡ 2 совпадают друг с другом и с осью x, поэтому не определяют положение плоскости в системе двух плоскостей проекций. Необходимо кроме следов задать в плоскости точку (рис. 5.6). В частном случае эта плоскость может быть биссекторной плоскостью, если угол α = β, а точка А равноудалена от плоскостей проекций П1 и П2. Рис. 5.6
Плоскостью уровня называется плоскость, перпендикулярная одновременно к двум плоскостям проекций и параллельная третьей. Таких плоскостей может быть три разновидности (рис. 5.7): · горизонтальная плоскость параллельна плоскости П1 и перпендикулярна к П2, П3 (рис. 5.7, а); · фронтальная плоскость параллельна плоскости П2 и перпендикулярна к П1, П3 (рис. 5.7, б); · профильная плоскость параллельна плоскости П3 и перпендикулярна к П1, П2 (рис. 5.7 в).
а) б)
в) Рис. 5.7 Из определения плоскостей уровня следует, что одна из проекций точки, линии, фигуры, принадлежащих этим плоскостям, будет совпадать с одноименным следом плоскости уровня, а другая проекция будет натуральной величиной этих геометрических образов
Дата добавления: 2013-12-12; Просмотров: 590; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |