Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Сечение многогранников плоскостью




Примеры решения задач

 

Ниже приведены решения одной и той же задачи вышеописанными методами.

 

9.6.1. Задание: определить натуральную величину треугольника ABC (рис. 9.8), а также угол наклона плоскости треугольника к плоскости П1 .

1) Решение методом замены плоскостей проекций (рис. 9.9).

Плоскость треугольника спроецируется в натуральную величину в том случае, если она будет параллельна одной из плоскостей проекций. Одним преобразованием задачу решить невозможно. Она решается в два этапа: при первой замене плоскостей проекций получают плоскость треугольника ABC, перпендикулярную к новой плоскости проекций, при второй замене - получают плоскость треугольника, параллельную новой плоскости проекций.

Первый этап. Одним из условий перпендикулярности двух плоскостей является наличие прямой, принадлежащей одной из плоскостей, перпендикулярной к другой плоскости. Используя этот признак, проводят через точку А в плоскости треугольника горизонталь (h). Затем на произвольном расстоянии от горизонтальной проекции треугольника A1B1C1 проводят ось x1,4 новой системы плоскостей проекций П14 перпендикулярно к горизонтальной проекции горизонтали h1. В новой системе треугольник ABC стал перпендикулярен к новой плоскости проекций П4.

На линиях проекционной связи в новой системе откладывают координаты z точек А, В, С с фронтальной проекции исходной системы плоскостей П12.

 


При соединении новых проекций А4,B4, С4 получают прямую линию, в которую спроецировался треугольник ABC. На этом этапе определяется угол наклона плоскости треугольника к горизонтальной плоскости проекции П1 – угол α. На чертеже это угол между осью x1,4 и проекцией С4А4В4.

Второй этап. Выбираем новую плоскость проекции П5, параллельную плоскости треугольника, т.е. новую ось x4,5 проводят параллельно С4А4В4 на произвольном расстоянии. Получают новую систе­му П45. Полученный треугольник А5В5С5 и есть искомая натуральная величина треугольника ABC.

 

2) Решение методом вращения вокруг проецирующей оси (рис. 9.10).

Задача решается в два этапа. На первом этапе выполняют вращение так, чтобы плоскость треугольника ABC преобразовалась в проецирующую плоскость, т.е. стала перпендикулярна к одной из плоскостей проекций. Для этого проводят горизонталь h (h1,h2) через точку А. (построение начинают с фронтальной проекции h2, она проходит через проекцию точки A2 и проекцию точки 12 при этом h2 параллельна оси х). Далее находят горизонтальную проекцию h1 горизонтали h (через проекции A1 и 11). Через точку А проводят ось i - ось вращения треугольника так, чтобы она была перпендикулярна к П1. На фронтальной проекции через вершины А2 и В2 проводят следы горизонтальных плоскостей уровня Δ и Σ в которых при вращении будут перемещаться точки А и В. Вершина С принадле­жит плоскости П1 поэтому ее плоскостью вращения будет плоскость проекций П1. На горизонтальной проекции, взяв за центр вращения проекцию i1 поворачивают горизонталь А так, чтобы на плоскость П2 она спроецировалась в точку. На чертеже это выразится тем, что h'1 займет новое положение - перпендикулярно к оси х.

При этом на фронтальной проекции А2 остается неизменной, находясь на следе плоскости Σ2 и ее обозначим a2'.

На гори­зонтальной проекции поворачиваем оставшиеся вершины В и С во­круг оси i так, чтобы . На фронтальной проекции вершина В перемещается по следу плоскости 2, а вершина С - по оси х. Соединив новые положения проекций всех вершин треугольника ABC, получают проекцию А'2В'2С'2, сливающуюся в линию. Плоскость треугольника ABC заняла проецирующее положение. На данном этапе, при необходимости, находят угол наклона плоскости треугольника ABC к П1 – угол α.

На втором этапе проводят ось j через вершину С так, чтобы ось была фронтально проецирующая. При этом С'2j'2, а горизонтальная проекция j'1 пройдет через проекцию С'1. Вокруг оси поворачивают треугольник так, чтобы он стал параллелен горизонтальной плоскости проекций. В данной задаче вращают точки А'2 и В'1, вокруг j2 до совмещения с осью х,при этом проекции B'1 и A'1 будут перемещаться параллельно оси х и займут новое положение В"1, и А"1 вершина С оста­нется на месте. Соединив точки между собой, получают новое положение плоскости (оно соответствует натуральной величине треугольника ABC).

 

3) Решение методом плоскопараллельного перемещения (рис. 9.11).

 

Задача решается в два этапа. На первом этапе преобразуют чертеж так, чтобы плоскость треугольника ABC стала перпендику­лярна к одной из плоскостей проекций. Для этого проводят в плоскости треугольника горизонталь h (фронтальная проекция А212х,). Каждую вершину треугольника заключают в свою плоскость уровня, параллельную плоскости П1. В рассматриваемом примере вершина С принадлежит плоскости проек­ций П1, А принадлежит плоскости Σ, В — плоскости Δ.

Плоскость треугольника перемещается в пространстве до тех пор, пока горизонталь h1 треугольника не станет перпендикулярна к фронтальной плоскости проекций П2.

Для этого на свободном поле чертежа вычерчивают горизонтальную проекцию треугольника A1B1C1 с условием, чтобы А111 П2, а значит А111х. При этом вершины треугольника, перемещаясь каждая в своей плоскости, займут новое положение – (фронтальная проекция А2В2С2 заменится А'2В'2С'2). Соединив эти точки, получают новое положение треугольника ABC, спроецированного в линию, т.е. перпендикулярного к плоскости П2.

 

 

На втором этапе, чтобы получить натуральную величину треугольника ABC, его плоскость поворачивают до тех пор, пока она не будет параллельна одной из плоскостей проекций. В рассматриваемом решении фронтальную проекцию треугольника А222' располагают на произвольном расстоянии от оси х параллельно плоскости П1. При этом вершины А, В и С треугольника заключают в горизонтально проецирующие плоскости θ, Т, Р. По следам этих плоскостей будут перемещаться горизонтальные проекции вершин А111'. От нового положения фронтальной проекции А222" проводят линии проекционной связи до пресечения с соответствующими следами плоскостей, в которых они перемещаются (θ1,T1,P1), и получая проекции точек А1" В1" C1". Соединив эти проекции, получают тре­угольник ABC в натуральную величину.

4) Решение методом вращения вокруг линии уровня (рис.9.12)

Для решения задачи этим способом необходимо повернуть плоскость треугольника вокруг линии уровня, в данном случае вокруг горизонтали, до положения, параллельного горизонтальной плоскости проекции. Через точку А в плоскости треугольника ABC проводят горизонталь h, фронтальная проекция которой будет параллельна оси х. Отмечают точку 12 и находят ее горизонтальную проекцию 11. Прямая A111 является горизонтальной проекцией h1 горизонтали h. Вокруг горизонтали будут вращаться точки В и С. Определяют натуральную величину радиуса вращения точки С.

Для определения натуральной величины радиуса вращения используют любой метод (в данном случае способ прямоугольного треугольника) строят прямоугольный треугольник, в котором O1C1 - один из катетов. Вто­рой катет - разность координат Δz отрезка О2С2, взятого с фронталь­ной проекции. В построенном треугольнике гипотенуза O1C0 - нату­ральная величина радиуса вращения.

На продолжении перпендикуляра O1C1 откладывают |RBp.| и полу­чают новое положение вершины С после вращения — С0. Проекция вер­шины В0 получается пересечением луча C011 и перпендикуляра к горизонтальной проекции h1 проведенного через проекцию точки В1.

Треугольник A0B0C0 есть искомая натуральная величина тре­угольника ABC.

 

5) Решение методом совмещения (рис. 9.13).

 

 


Для решения задачи методом совмещения необходимо построить следы плоскости Σ, которой принадлежит треугольник ABC. Для этого проводят в плоскости треугольника ABC фронталь f и находят горизонтальный след этой фронтали – N1. По условию задачи вершина С треугольника принадлежит горизонтальной плоскости проек­ций П1. Тогда горизонтальный след Σ1 плоскости Σ проводят через проекции N1 и C1. Соединив эти две точки и продлив отрезок до пересечения с осью х, находят точку схода следов Σх. Учитывая, что все фронтали плоскости параллельны ее фронтальному следу, фронтальный след Σ2 плоскости Σ проводят через точку Σх параллельно проекции фронтали f2.

Для нахождения натуральной величины треугольника ABC необходимо построить совмещенное положение плоскости Σ с горизонтальной плоскостью проекций П1. Для этого через вершину А проводят горизонталь h1. На фронтальном следе Σ2 фиксируют точку 22. Ее горизонтальная проекция - точка 21. Точка 2 вращается в плоскости, перпендикулярной к горизонтальному следу плоскости Σ. Поэтому, чтобы построить точку 2 в совмещенном положении 20, проводят из 21 перпендикуляр к горизонтальному следу Σ, а из центра Σх дугу окружности радиусом Σх22 до пересечения с направлением перпендикуляра. Соединив Σх с 20, получают совмещенное положение фронтального следа Σ0 - Далее через точку 20 проводят горизонталь h0 всовмещенном положении. На этой горизонтали находят точку А0, проведя перпендикуляр из точки A1 к горизонтальному следу Σ1.

По такой же схеме строят совмещенное положение точки В0. Совмещенное положение точки С совпадает с ее горизонтальной проекцией С1 т.е. С 1С0. Соединив построенные точки, получают треугольник А0В0С0 - это и есть натуральная величина треугольника ABC.

 

  1. МНОГОГРАННИКИ.



Поделиться с друзьями:


Дата добавления: 2013-12-12; Просмотров: 1555; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.03 сек.