Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Внутреннее строение Солнца и строение его атмосферы. Солнечная активность

Наблюдения и теории позволяют построить следующую модель Солнца (рис. 5.3).

Самый внутренний слой называется солнечным ядром. В этом слое вблизи центра Солнца температура достигает 15 млн К, давление — сотни миллиардов атмосфер, а плотность вещества составляет около 150 г/см3. В этих условиях отдельные атомы движутся с огромными скоростями, достигающими, например, для водорода, сотен километров в секунду. Поскольку плотность вещества очень велика, весьма часто происходят атомные столкновения. Некоторые из таких столкновений приводят к тесным сближениям атомных ядер, необходимым для возникновения ядерных реакций.

 

 

Рис. 5.3. Схематический разрез Солнца и его атмосферы.

 

В недрах Солнца существенную роль играют две ядерные реакции. В результате одной из них, схематически изображенной на рис. 5.4, из четырех атомов водорода образуется один атом гелия. На промежуточных стадиях реакции образуются ядра тяжелого водорода (дейтерия) и ядра изотопаНе3. Эта реакция называется протон-протонной.

Другая реакция в условиях Солнца играет значительно меньшую роль. В конечном счете она также приводит к образованию ядра гелия из четырех протонов. Процесс сложнее и может протекать только при наличии углерода, ядра которого вступают в реакцию на первых ее этапах и выделяются на последних. Таким образом, углерод является катализатором, почему и вся реакция носит названия углеродного цикла.

При обычных столкновениях сближению одинаково заряженных частиц препятствует электростатическое отталкивание (кулоновский барьер). Именно для его преодоления частицы должны иметь огромные энергии, т.е. температура вещества должна быть очень высокой. Поэтому описанные ядерные реакции называют термоядерными. Термоядерные реакции являются источником энергии, излучаемой Солнцем в мировое пространство.

Так как наибольшие температуры и давление создаются в самых глубоких слоях Солнца, ядерные реакции и сопровождающее их энерговыделение наиболее интенсивно происходит в самом центре Солнца. Только здесь наряду с протон-протонной реакцией большую роль играет углеродный цикл. По мере удаления от центра Солнца температура и давление становятся меньше, выделение энергии за счет углеродного цикла быстро прекращается и вплоть до расстояния около 0,2-0,3

 

Рис. 5.4. Схема основного варианта протон-протонной реакции: 6 H1 ® 2 D2 + 2 H1 ® 2 He3 ® He4 + 2 H1; здесь H1- протон, D2 - ядро дейтерия, He3 и He4 - изотопы гелия, e+ - позитрон, n - нейтрино.

 

радиуса от центра существенной остается только протон-протонная реакция. На расстоянии от центра больше 0,3 радиуса температура становится меньше 5 млн К, существенно падает и плотность. В этих условиях ядерные реакции практически не происходят. Эти слои только передают наружу излучение, выделившееся на большей глубине в виде гамма-квантов, которые поглощаются и переизлучаются отдельными атомами.

Та часть Солнца, в которой выделение энергии за счет ядерных реакций несущественно и происходит процесс переноса энергии путем поглощения излучения и последующего переизлучения, называется зоной лучистого равновесия или зоной лучистой передачи энергии. Она занимает область примерно от 0,3 до 0,7 r ¤ от центра Солнца. Выше этого уровня в переносе энергии

начинает принимать участие само вещество, и непосредственно под наблюдаемыми внешними слоями Солнца, на протяжении около 0,3 его радиуса, образуется конвективная зона, в которой энергия переносится конвекцией.

Наконец, самые внешние слои Солнца, излучение которых можно наблюдать, называются солнечной атмосферой;в основном она состоит из трех слоев, называемых фотосферой, хромосферой и короной.

Фотосферой называются те слои солнечной атмосферы, в которых образуется видимое излучение, имеющее непрерывный спектр. Таким образом, она излучает практически всю приходящую к нам солнечную энергию. Фотосфера видна при непосредственном наблюдении Солнца в белом свете в виде кажущейся его поверхности. Первое, что бросается в глаза во время таких наблюдений, — плавное потемнение солнечного диска к краю.

Толщина фотосферы составляет около 300 км. Плотность вещества на нижней границе фотосферы 5∙10–7 г/см3, тогда как на верхней границе она в тысячу раз меньше.

На поверхности Солнца можно разглядеть много деталей. Вся фотосфера Солнца состоит из светлых зернышек, пузырьков. Эти зернышки называются гранулами. Размеры гранул невелики, 1000–2000 км, расстояние между ними — 300–600 км. На Солнце наблюдается одновременно около миллиона гранул. Каждая гранула существует несколько минут. Гранулы окружены темными промежутками, как бы сотами. В гранулах вещество поднимается, а вокруг них – опускается. Грануляция — проявление конвекции в более глубоких слоях Солнца.

Гранулы создают общий фон, на котором можно наблюдать несравненно более масштабные образования, такие, как факелы и солнечные пятна.

Впервые пятна на Солнце в телескоп наблюдал Галилей в 1610 году. Пятна на Солнце— очевидный признак его активности (рис. 5.5). Это более холодные области фотосферы. Температура пятен около 3500 К, поэтому на ярком фоне фотосферы (с температурой около 6000 К) они кажутся темнее. Образование пятен связано с магнитным полем Солнца. Небольшие пятна имеют в поперечнике несколько тысяч километров. Размеры крупных пятен достигают 100 000 км; такие пятна существуют около месяца. Солнечные пятна имеют внутреннюю структуру: более темную центральную часть — ядро — и окружающую ее полутень. Солнечные пятна часто образуют группы, которые могут занимать значительную площадь на солнечном диске.

Рисунок 5.5.Солнечное пятно. Отчетливо видны ядро и полутень. Вокруг пятна видна грануляция.

 

 

Пятна на Солнце часто бывают окружены светлыми зонами, называемыми факелами. Они горячее атмосферы примерно на 2000 К и имеют ячеистую структуру (величина каждой ячейки – около 30 тысяч километров). Часто встречаются факельные поля, внутри которых пятен нет.

Хромосфера Солнца (рис. 5.6) видна только в моменты полных солнечных затмений. Луна полностью закрывает фотосферу, и хромосфера вспыхивает, как небольшое кольцо ярко-красного цвета, окруженное жемчужно-белой короной. Хромосфера получила свое название именно из-за этого явления (греч. «окрашенная сфера»).

Размеры хромосферы 10–15 тысяч километров, а плотность вещества в сотни тысяч раз меньше,

Рисунок 5.6.Хромосферу Солнца, обнаруженную во время полных солнечных затмений, теперь астрономы наблюдают каждый день в современные телескопы.

 

 

чем в фотосфере. Температура в хромосфере быстро растет, достигая в верхних ее слоях десятков тысяч градусов. Рост температуры объясняется воздействием магнитных полей и волн, проникающих в хромосферу из зоны конвективных движений. Здесь нагрев происходит, как в микроволновой печи, только гигантских размеров.

На краю хромосферы наблюдаются выступающие язычки пламени – хромосферные спикулы, представляющие собою вытянутые столбики из уплотненного газа. Температура этих струй выше, чем температура фотосферы.

 

Часто, особенно когда на Солнце имеются большие группы пятен, в хромосфере возникают вспышки. Они похожи на огромные взрывы, длящиеся всего лишь несколько минут. За несколько минут в маленькой области высвобождается энергия порядка 100 000 миллиардов кВт/час: столько же тепла поступает от Солнца на Землю в год! При этом излучение резко возрастает не только в видимой области спектра, но и в ультрафиолете, и в рентгеновской области спектра, увеличивается поток космических лучей. Вспышки вызывают изменения в магнитном поле Земли и могут даже повредить системы электроснабжения. Причины вспышек пока еще плохо изучены; по-видимому, они вызываются резким изменением магнитного поля в хромосфере.

Самая внешняя, самая разреженная и самая горячая часть солнечной атмосферы ¾ корона. Она прослеживается от солнечного лимба до расстояний в десятки солнечных радиусов. Несмотря на сильное гравитационное поле Солнца, это возможно благодаря огромным скоростям движения частиц, составляющих корону. Корона имеет температуру около миллиона градусов и состоит из высокоионизированного газа. Возможно, причиной такой высокой температуры являются поверхностные выбросы солнечного вещества в виде петель и арок. Миллионы колоссальных фонтанов переносят в корону вещество, нагретое в глубинных слоях Солнца.

Яркость короны в миллионы раз меньше, чем фотосферы, поэтому корону можно видеть только во время полного солнечного затмения, либо с помощью коронографа. Наиболее яркую ее часть принято называть внутренней короной. Она удалена от поверхности Солнца на расстояние не более одного радиуса. Внешняя корона Солнца имеет протяженные границы.

 

Рисунок 5.7.Вид корональных лучей заметно меняется от минимума к максимуму солнечной активности.

 

Важной особенностью короны является ее лучистая структура. Корональные лучи имеют самую разнообразную форму (рис. 5.7). В эпоху минимума солнечной активности корона имеет округлую форму, она как бы «причесана». В эпоху максимума корональные лучи раскинуты во все стороны.

Наиболее грандиозными солнечными образованиями являются протуберанцы ¾ выбросы солнечного вещества. Плотность и температура протуберанцев такая же, как и вещества хромосферы, но на фоне горячей короны протуберанцы – холодные и плотные образования. Температура протуберанцев около 20 000 К. Некоторые из них существуют в короне несколько месяцев, другие, появляющиеся рядом с пятнами, быстро движутся со скоростями около 100 км/с и существуют несколько недель. Размеры протуберанцев могут быть разными. Типичный протуберанец имеет высоту около 40 000 км и ширину около 200 000 км. Зарегистрированы и рекордсмены среди протуберанцев, их размеры превышали 3 000 000 км.

После семнадцатилетних наблюдений Генрих Швабе установил, что количество пятен на Солнце с течением времени меняется. В годы минимума пятен на поверхности Солнца может не быть совсем, в годы максимума их число измеряется десятками. Максимумы и минимумы чередуются в среднем каждые 11 лет (от 7 до 17 лет), последний максимум солнечной активности был в 2000 году. Возможно, существуют и более длительные циклы солнечной активности. В начале ХХ века Д. Хейл обнаружил, что магнитные полярности первых, ведущих, пятен и хвостовых пятен в северном и южном полушариях Солнца противоположны и меняются полюсами в каждом новом цикле. Поэтому полный цикл солнечной активности происходит в течение 22 лет.

Цикл активности солнечных пятен имеет прямое отношение к земному климату. У некоторых деревьев толщина колец имеет одиннадцатилетний цикл. В конце XVII – начале XVIII века, когда пятен практически не было, в Европе стояла очень холодная погода.

В начале XX века Александр Чижевский после многолетних статистических исследований доказал зависимость количества событий в общественной жизни на Земле от активности Солнца. Выяснилось, что в годы максимумов солнечной активности на Земле увеличивается количество революций и войн, усиливается политическая активность населения. Максимумы солнечной активности также провоцируют развитие многих болезней: в частности, усиливается вероятность эпидемий.

 

<== предыдущая лекция | следующая лекция ==>
Солнце, его общие характеристики и спектр | Определение основных характеристик звезд
Поделиться с друзьями:


Дата добавления: 2013-12-12; Просмотров: 4108; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.