КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Применение АСМ в нанотехнологиях
АСМ - многофункциональный аналитический инструмент для исследования структуры поверхностей, распределения при поверхностных силовых и температурных полей, распределения величин характеристик физических свойств с нанометровым и атомным разрешением. АСМ - инструмент локальной модификации поверхности и для нанолитографии. Структуру непроводящих поверхностей можно исследовать только с помощью атомного силового микроскопа. Диагностика приборных структур. Разновидность АСМ - электронно-силовой микроскоп(ЭСМ) определяет распределение электрического поля на и емкости на поперечных сколах слоистых структур. Так определяют положение и протяженность -перехода в лазерных гетероструктурах и распределение инжектированных носителей в волноводной области. В электронной промышленности АСМ используется для контроля качества матриц цифровых видеодисков и самих видеодисков, а также для пластинок для интегральных микросхем. Диагностика эпитаксиальных пленок. Данные о структуре поверхности эпитаксиальных пленок, границ между слоями, типах и распределениях дефектов, их зависимостей от условий роста позволяют исследовать механизмы роста и определять их оптимальные режимы. АСМ позволяет определить размеры и формы квантовых точек, их распределение и их количество на единицу площади поверхности. На рис266 приведены АСМ-+изображения показывающие влияние условий роста на формирования самоорганизованных массивов квантовых точек германия на поверхности кремния (100). + Рис266 а,б,в соответствуют росту слоев германия при 700о С; осаждено 5,5,9 и11 монослоев германия соответственно. На рис266г,д,е показаны результаты осаждения девяти монослоев +германия при температурах600, 700, 750о соответственно. Такая информация необходима для создания структуры лазеров на квантовых точках и фотопреобразователей.
Рис.а)-осаждено5,5 слоев германия, б)осаждено 9 монослоев германия, в)осаждено11 монослоев. Все при 700 С. г) осаждено 9слоев при температуре 600 С, д)9 слоев при 700 С, е)9 слоев при 750 С.
Эти примеры свидетельствуют, что АСМ- мощное средство исследования полупроводниковых материалов и наноструктур при нанометровом разрешении.
Нанолитография на основе АСМ. Локальная модификация поверхности и нанолитография производятся механическим воздействием зонда на поверхность или полевой эмиссией с зонда, или локальными электрохимическими реакциями в методе локального анодного окисления. Механическая наномодификация производится непосредственным механическим воздействием острия зонда на поверхность контактным методом. Для нетвердого арсенида +галлия глубина только 2 нм. На рис 268 приведено АСМ-изображение поверхности с линиями, полученными механическим воздействием на зонд. Сила давления при увеличивалась с левого нижнего угла к правому верхнему углу в течении 100 мс. Для каждой линии. Видно, что глубина остается постоянной (2 нм), ширина линии увеличивается. Локальное анодное окисление. Предпочтительно используется АСМ с проводящим зондом, чем СТМ., т.к. дает большую толщину окисла и одновременно диагностирует его диэлектрическую поверхность. Процесс локального анодного окисления применяется для модификации поверхности металлов , полупроводников и полупроводниковых гетероструктур, для изготовления активных элементов наноэлектроники. Принципиальная схема метода анодного окисления представлена на рис 269+.
Рис. 1-соединяющий мениск, 2-зонд, 3- слой естественногоокисла, 4-анодный окисел.
Процесс проводят в обычных атмосферных условиях. Без погружения системы «зонд-подложка» в жидкость. Во влажной атмосфере на поверхностях зонда и подложки всегда имеется несколько монослоев адсорбированной воды. Они образуют соединяющий мениск 1 при сближении. Зонд2 имеет отрицательный потенциал относительно подложки из анодоокисляемого материала. При наличии тока между металлическим Ме зондом и полупроводниковой подложкой протекают электрохимические реакции анодирования подложки , и реакция окисления кремния , где -электроны, - дырки. На рис 3- слой естественного окисла. 4-анодный окисел, образующийся под зондом. На начальной стадии процесса электроны туннелируют с зонда на подложку через слой естественного окисла. Ионы и ионы , которые образуются в мениске в результате гидролиза воды и двигаются сквозь оксид под действием электрического поля. На поверхности раздела ионы реагируют с дырками . Доставка воды в зазор между зондом и подложкой осуществляется под действием электрического поля с напряженностью. Поле оказывает ориентирующее действие на полярные молекулы воды, что приводит к локальному снижению давления насыщенны паров , пресыщению паровой фазы и доставке воды в мениск. Процесс окисления идет вглубь подложки. Из-за присутствия кислорода объем окисленного вещества больше исходного объема. Окисленные линии разбухают и выступают над поверхностью на несколько нанометров. Это позволяет видеть окисление с помощью АСМ. +На рис 270 представлена надпись сделанная проводящим зондом АСМ. На б поверхность после травления. На в приведен массив точек окисла. диаметр точек 44 нм, высота1,2 нм. Расположены на расстоянии 60 нм друг от друга. Они получены подачей импульса напряжения14В при сканировании зонда (обратная связь в импульсе отключалась.) Процесс проводят в контактном и бесконтактном режимах. Для создания проводящих кантиливеров применяют проводящие покрытия на кремниевых и нитридных кантилеверах. Перьевая нанолитография (метод нагруженного пера, нанописьмо). Предложен в 1999 г. «Перо» - зонд АСМ. «Бумага» – подложка, «чернила» -жидкие органические вещества или их растворы. Зонд АСМ рисует чернилами на поверхности подложки. Диапазон ширины линии- от 10нм до1мкм.Скорость движения зонда при записи от нескольких нанометров в секунду до100 нм/сек. Метод медленный, но эффективный для создания прототипов различных приборов, и биотехнологии, фармацевтике и для исследования белков и ДНК. +Схема процесса перьевой нанолитографии приведена на рис 273. Рис схема прцесса перьевой нанолитографии. На зонд АСМ наносится вещество «чернил» осаждением из пара или погружением в раствор с последующей сушкой. Молекулы вещества показаны волнистыми линиями. В атмосферных условиях на поверхностях зонда и подложки всегда имеется несколько монослоев адсорбированной воды., которые образуют мениск при контакте. Форма мениска зависит от относительной влажности и смачивающих свойств подложки и зонда. Молекулы осаждаемого вещества посредством диффузии переносятся через мениск и осаждаются на подложке. Зонд движется вдоль подложки создавая рисунок. Возможно перетекание жидкости с зонда на образец под действием капиллярных сил. Молекулы «чернил» должны химически связываться с поверхностью подложки, образуя упорядоченные самоорганизованные слои. Тогда нанесенный рисунок прочен и не расплывается. Химическая связь образуется между атомами серы или селена и золотой подложкой. В качестве «чернил» для золотых подложек используются 1-октадеканетиол (ОДТ) и12-меркаптогексадеканоидная кислота (МНА). Разрешающая способность (минимальная ширина линий) зависит от радиуса кривизны острия зонда, скорости движения зонда при записи, относительной влажности. Минимальное расстояние между линиями . Линии имеет ширину от 15 нм до нескольких сотен нанометров. +На рис 274 приведено изображение литографического устройства с8 кантилеверами, изготовленного из единого монокристалла кремния методами микроэлектронной технологии. Устройство дает ширину линий 60 нм при скорости записи0,5 мкм/с, расстояние между кантилеверами -350 нм. Существует наномеханическое устройство сверхплотной записи данных «Miilipede» («Многоножка»). Плотность записи -0,186 Тбит/см2, размер области записи .Основной инструмент записи/чтения матрица содержащая кантилевера с зондами информация хранится в виде последовательностей мест с углублениями («1») и мест с их отсутствием(«0»). Углубления записаны на полимерных пленках нанометровой толщины.
+На рис 276 приведена сканирующая электронная микрофотография чипа с матрицей кантилевера. На изображении чипа показаны нагревательные элементы с каждой стороны матрицы и четыре температурных датчика в углах матрицы. Они позволяют контролировать разность температур между матрицей и средой в 1оС. На рис втором слева Увеличенное изображение секции матрицы кантилеверов. На рис третьем слева показаны ячейки отдельного П-образного кантилевера. Справа зонд кантилевера в двух увеличениях. Перекладина в П-образном кантилевере представляет собой нагревательную платформу из высокоомного кремния. Светлой точкой отмечено расположение зонда. Ноги П-образного кантилевера это - и- выводы из низкоомного кремния. Способ записи –термомеханический. Через кантилевер создается локальное давление на слой полимера и одновременно производится локальный нагрев полимера протеканием тока по П-образному кантилеверу. В процессе записи на адресную строку в матрице кантилеверов на 20 мкс подается отрицательное смещение, одновременно на столбцы подаются входные данные от мультиплексора. Для «1» положительное смещение, для 0-земля, ток идет через все кантилеверы строки. Фиксируют «1» только кантилеверы с положительным смещением. Ток, идущий через заземленные кантилеверы, недостаточен для размягчения резиста, и эти кантилеверы записывают «0». В процессе чтения на адресную строку подается отрицательное смещение, а на столбцы-земля(через предохранительный резистор 10 кОм) и кантилеверы поддерживают слабо нагретыми. Во время сканирования измеряют напряжения на резисторах, что позволяет считывать записанные данные.
Рис Слева направо: Увеличенное изображение секции матрицы кантилеверов, ячейки отдельного П-образного кантилевера, Зонд кантилевера, и выше острие зонда.
Дата добавления: 2013-12-12; Просмотров: 957; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |