Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Формула линзы




Пример построения изображения точки в рассеивающей линзе

Примеры построения изображения точки в собирающей линзе

Построение изображения в линзах

Для построения изображения предмета необходимо построить изображение каждой его точки.

Для построения изображения точки достаточно найти точки пересечение двух любых лучей идущих из заданной точки.

Удобнее всего использовать в качестве одного из этих лучей луч, идущий через оптический центр, он идет через линзу не отклоняясь:

Другой удобный луч - идущий параллельно оптической оси. Он, преломляясь в линзе, проходит через фокус, если линза собирающая:

Если линза рассеивающая, то через фокус проходит продолжение луча:

И, если луч шел через фокус собирающей линзы, то после преломления он пойдет параллельно оптической оси:

Для рассеивающей линзы параллельно оптической оси пойдет после преломления луч, продолжение которого проходит через фокус:

ΔABO подобен ΔA'B'O, значит:

.

ΔOCF подобен ΔA'B'F, значит:

, следовательно: ,

освободимся от знаменателя:

,

поделим на d f F, тогда:

,

или

,

откуда следует формула тонкой линзы:

.

Здесь d, f, F - алгебраические величины.

 




Поделиться с друзьями:


Дата добавления: 2013-12-12; Просмотров: 566; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.022 сек.