Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Функции и структура процессора

Структурная схема и общий принцип функционирования ЭВМ

ФУНКЦИОНАЛЬНАЯ ОРГАНИЗАЦИЯ ЭВМ

ГЛАВА 2

 

Электронная вычислительная машина (ЭВМ) – это устройство, выполненное на электронных приборах, предназначенное для автоматического преобразования информации под управлением программы.

Основные элементы электронной вычислительной машины (фон-неймановской структуры) и связи между ними показаны на рис. 2.1.

Рис. 2.1. Структура ВМ фон-неймановской архитектуры

Процессор (центральный процессор, ЦП) выполняет логические и арифметические операции, определяет порядок выполнения операций, указывает источники данных и приемники результатов. Работа процессора происходит под управлением программы.

При первом знакомстве с ЭВМ считают, что процессор состоит из четырех устройств: арифметико-логического устройства (АЛУ), устройства управления (УУ), регистров общего назначения (РОН) и кэш-памяти. АЛУ выполняет арифметические и логические операции над данными. Промежуточные результаты сохраняются в РОН. Кэш-память служит для повышения быстродействия процессора, которое обеспечивается путем уменьшения времени его непроизводительного простоя. УУ отвечает за формирование адресов очередных команд, т.е. за порядок выполнения команд, из которых состоит программа.

Программа – это набор команд, под действием которых работает ЭВМ. Команда обеспечивает выработку в УУ управляющих сигналов, под действием которых процессор выполняет элементарные операции.

Таким образом, программы состоят из команд, а при выполнении команд процессор разбивает команды на элементарные операции.

Элементарнымиоперациями для процессора являются арифметические и логические действия, перемещение данных между регистрами процессора, счет и т.д.

Основной функцией системной шины является передача информации между процессором и остальными устройствами ЭВМ. Системная шина состоит из трех шин: шины управления, шины данных и адресной шины. По этим шинам циркулируют управляющие сигналы, данные (числа, символы), адреса ячеек памяти и номера устройств ввода-вывода.

Сделаем образное сравнение работы системной шины с работой почты. По шине данных пересылаются письма в места, адреса которых указаны на шине адреса. Шина управления следит, чтобы письма при движении не мешали друг другу и перемещались по очереди. Под письмами нужно понимать операнды (данные и команды), которыми обмениваются отдельные блоки ЭВМ.

Память предназначена для записи, хранения, выдачи команд и обрабатываемых данных.

Существует несколько разновидностей памяти: оперативная, постоянная, внешняя, кэш, CMOS (КМОП), регистровая. Существование целой иерархии видов памяти объясняется их различием по быстродействию, энергозависимости, назначению, объему и стоимости. Многообразие видов памяти помогает снять противоречие между высокой стоимостью памяти одного вида и низким быстродействием памяти другого вида. Иерархическая структура памяти будет рассмотрена в главе 3.

Внешние запоминающие устройства (ВЗУ) предназначены для долговренного хранения информации. К ВЗУ относятся накопители на магнитной ленте (магнитофоны, стримеры), накопители на жестких дисках
(винчестеры), накопители на гибких дисках, накопители на оптических дисках. ВЗУ по сравнению с ОЗУ имеют, в основном, больший объем памяти, но существенно меньшее быстродействие.

К устройствам ввода информации относятся: клавиатура, ручные манипуляторы типа «мышь», трекбол, джойстик, трекпойнт, трекпад, сканер, сенсорные экраны, световое перо, информационные перчатки, информационный костюм, шлем, джойстринг, диджитайзер, цифровая видеокамера, микрофон и др.

К устройствам вывода информации относятся: дисплей (монитор), принтер, плоттер, акустические колонки и др.

Модем выполняет функции и устройства ввода и устройства вывода информации. Он позволяет соединяться с другими удаленными компьютерами с помощью телефонных линий связи и обмениваться информацией между ЭВМ.

Одной из плодотворных идей, положенных в основу персональных компьютеров, является открытость архитектуры. Согласно этой концепции каждый пользователь может самостоятельно формировать конфигурацию своего компьютера по своему усмотрению. Это означает, что в зависимости от потребности пользователь может подключить к системной шине различные устройства: модем, звуковую плату, клавиатуру электромузыкального инструмента, плату телевизионного приемника и т.п. Открытость архитектуры позволяет легко модернизировать имеющийся компьютер, например, путем замены винчестера на жесткий диск большего объема, замены процессора, увеличения объема оперативной памяти и т.д.

 

Общий принцип работы ЭВМ

Общий принцип работы ЭВМ заключается в следующем. Из процессора на шину адреса (на структурной схеме она не показана и находится внутри системной шины) выдается адрес очередной команды. Считанная по этому адресу команда (например, из ПЗУ), поступает по шине данных (внутри системной шины) в процессор, где она выполняется с помощью АЛУ. Устройство управления процессора определяет адрес следующей выполняемой команды (фактически номер очередной ячейки памяти, где находится очередная команда). После исполнения процессором текущей команды на шину адреса выводится адрес ячейки памяти, где хранится следующая команда и т.д.

Сигналы, передаваемые по управляющей шине, синхронизируют работу процессора, памяти, устройств ввода и вывода информации.

Порядок выбора адресов из памяти (и очередности выполнения команд) определяет программа, которая может располагаться в ПЗУ, но чаще выполняемая в данный момент времени программа находится в ОЗУ. В линейных программах команды последовательно выбираются из очередных ячеек памяти. В разветвляющихся программах естественный порядок выбора адресов ячеек памяти может нарушаться. В результате может происходить переход (резкий скачок) к ячейке памяти, расположенной в любом месте ОЗУ. При одном наборе исходных данных переход будет происходить, а при другом наборе перехода не будет. По этой причине такие команды называют командами условной передачи управления.

Нередко при работе ЭВМ программа вводится с клавиатуры в ОЗУ. Затем процессор под управлением этой программы выполняет необходимые действия. Чаще управляющую программу загружают в ОЗУ с внешнего запоминающего устройства или по вычислительной сети. При выполнении загруженной программы ЭВМ запрашивает у пользователя необходимые данные и процессор после выполнения указанных в программе команд отправляет результат по системной шине на одно из устройств вывода информации.

Выполнение основной программы иногда может приостанавливаться с целью выполнения какого-то другого срочного задания, например, передачи данных на принтер. Такой режим работы, когда временно приостанавливается выполнение основной программы, и происходит обслуживание запроса называется прерыванием. По завершению обслуживания прерывания процессор возвращается к выполнению временно отложенной программы

Запросы на прерывание могут возникать из-за сбоев в аппаратуре, переполнения разрядной сетки, деления на ноль, требования внешним устройством выполнения операции ввода информации и т.д. Например, при нажатии клавиши на клавиатуре возникает прерывание, обработка которого сводится к записи кода нажатой клавиши в буфер клавиатуры. Обслуживание прерываний осуществляется с помощью специальных программ обработки прерываний.

Очевидно, что конструкция современной ЭВМ много сложнее рассмотренной конструкции. На структурной схеме не изображены тактовый генератор, который подключен к процессору, адаптеры (или контроллеры), включенные между системной шиной и каждым устройством ввода-вывода и многие другие блоки. Однако выбранный уровень детализации позволяет легче понять общий принцип работы ЭВМ. Приведенный вид структурной схемы ЭВМ является неймановской структурой, названной так в честь американского ученого венгерского происхождения Джона фон Неймана.

Центральный процессор (ЦП) является ядром ЭВМ и выполняет следующие основные функции: выборку из ОП, дешифрацию и выполнение команд программы, организует обращения к различным видам памяти, формирует процедуры ввода-вывода, инициирует работу ВЗУ и периферийных устройств, воспринимает, и обрабатывает запросы прерываний от устройств машины и взаимодействующих с ней, осуществляет контроль и диагностику ЭВМ.

Основными узлами процессора являются:

- устройство управления (УУ);

- арифметико-логическое устройство (АЛУ).

Структурная схема процессора приведена на рисунке 2.2.

Рис. 2.2. Структурная схема центрального процессора

Устройство управления

Организует автоматическое выполнение программ и функционирование ЭВМ, как единой системы.

Счетчик команд. Счетчик команд (СК) – неотъемлемый элемент устройства управления любой ЭВМ, построенной в соответствии с фон-неймановским принципом программного управления. Согласно этому принципу соседние команды программы располагаются в ячейках памяти со следующими по порядку адресами и выполняются преимущественно в той же очередности, в какой они размещены в памяти ВМ. Таким образом, адрес очередной команды может быть получен путем увеличения адреса ячейки, из которой была считана текущая команда, на длину, выполняемой команды, представленную числом занимаемых ею ячеек.

Перед началом вычислений в СК заносится адрес ячейки основной памяти, где хранится команда, которая должна быть выполнена первой. В процессе выполнения каждой команды путем увеличения содержимого СК на длину выполняемой команды в счетчике формируется адрес следующей подлежащей выполнению команды.

В рассматриваемой ЭВМ любая команда занимает одну ячейку, поэтому содержимое СК увеличивается на единицу, что обеспечивается подачей сигнала управления +1СК. По завершении текущей команды адрес следующей команды программы всегда берется из счетчика команд. Для изменения естественного порядка вычислений (перехода в иную точку программы) достаточно занести в СК адрес точки перехода.

Хотя термин «счетчик команд» считается общепринятым, его нельзя признать вполне удачным из-за того, что он создает неверное впечатление о задачах данного узла. По этой причине разработчики ЭВМ используют иные названия, в частности программный счетчик или указатель команды. Последнее определение представляется наиболее удачным, поскольку точнее отражает назначение рассматриваемого узла УУ.

В заключение добавим, что в ряде ЭВМ счетчик команд реализуется в виде обычного регистра, а увеличение его содержимого производится внешней схемой (схемой инкремента/декремента).

Регистр команды. Счетчик команд определяет лишь местоположение команды в памяти, но не содержит информации о том, что это за команда. Чтобы приступить к выполнению команды, ее необходимо извлечь из памяти и разместить в регистре команды (РК).

Этот этап носит название выборки команды. Только с момента загрузки команды в РК она становится «видимой» для процессора. В РК команда хранится в течение всего времени ее выполнения. Как уже отмечалось ранее, любая команда содержит два поля: поле кода операции и поле адресной части. Учитывая это обстоятельство, регистр команды иногда рассматривают как совокупность двух регистров – регистра кода операции (РКОп) и регистра адреса (РА), в которых хранятся соответствующие составляющие команды.

Если команда занимает несколько последовательных ячеек, то код операции всегда находится в том слове команды, которое извлекается из памяти первым.

Это позволяет по коду операции определить, требуются ли считывание из памяти и загрузка в РК остальных слов команды. Собственно выполнение команды начинается только после занесения в РК ее полного кода.

Регистр адреса памяти. Регистр адреса памяти (РАП) предназначен для хранения адреса ячейки основной памяти вплоть до завершения операции (считывание или запись) с этой ячейкой. Наличие РАП позволяет компенсировать различия в быстродействии ОП и прочих устройств машины.

Регистр данных памяти. Регистр данных памяти (РДП) призван компенсировать разницу в быстродействии запоминающих устройств и устройств, выступающих в роли источников и потребителей хранимой информации. В РДП при чтении заносится содержимое ячейки ОП, а при записи помещается информация, подлежащая сохранению в ячейке ОП. Собственно момент считывания и записи в ячейку определяется сигналами ЧтЗУ и ЗпЗУ соответственно.

Дешифратор кода операции. Дешифратор кода операции (ДКОп) преобразует код операции в форму, требуемую для работы микропрограммного автомата (МПА). Информация после декодирования определяет последующие действия МПА, а ее вид зависит от организации МПА. В рассматриваемой ВМ – это унитарный код УнитК. Часто код операции преобразуется в адрес первой команды микропрограммы, реализующей указанную в команде операцию. С этих позиций ДКОп правильнее было бы назвать не дешифратором, а преобразователем кодов.

Микропрограммный автомат. Микропрограммный автомат (МПА) правомочно считать центральным узлом устройства управления. Именно МПА формирует последовательность сигналов управления, в соответствии с которыми производятся все действия, необходимые для выборки из памяти и выполнения команд. Исходной информацией для МПА служат: декодированный код операции, состояние признаков (флагов), характеризующих результат предшествующих вычислений, а также внешние запросы на прерывание текущей программы и переход на программу обслуживания прерывания.

Введем два определения:

Микрооперация – это элементарные пересылки или преобразования информации, выполняемые в течение одного такта сигналов синхронизации. В течение одного такта могут одновременно выполнятся несколько микроопераций. Совокупность сигналов управления, вызывающих микрооперации, выполняемые в одном такте, называют микропрограммой. Реализует микропрограмму, т.е. вырабатывает управляющие сигналы, задаваемые ее микрокомандами, МПА – БМУ (блок микропрограммного управления).

Арифметико-логическое устройство

Это устройство, как следует из его названия, предназначено для арифметической и логической обработки данных. В машине, изображенной на рис. 2.2, оно содержит следующие узлы.

Операционный блок. Операционный блок (ОПБ) представляет собой ту часть АЛУ, которая, собственно, и выполняет арифметические и логические операции над поданными на вход операндами. Выбор конкретной операции из возможного списка операций для данного ОПБ определяется кодом операции команды. В нашей ВМ код операции поступает непосредственно из регистра команды. В реальных машинах КОп зачастую преобразуется в МПА в иную форму и уже из микропрограммного автомата поступает в АЛУ. Операционные блоки современных АЛУ строятся как комбинационные схемы, то есть они не обладают внутренней памятью и до момента сохранения результата операнды должны присутствовать на входе блока.

Регистры операндов. Регистры РХ и РY обеспечивают сохранение операндов на входе операционного блока вплоть до получения результата операции и его записи (в нашем случае в МП, т.е. в один из РОН).

Регистр признаков. Регистр признаков (РПрз) предназначен для фиксации и хранения признаков (флагов), характеризующих результат последней выполненной арифметической или логической операции. Такие признаки могут информировать о равенстве результата нулю, о знаке результата, о возникновении переноса из старшего разряда, переполнении разрядной сетки и т.д. Содержимое РПрз обычно используется устройством управления для реализации условных переходов по результатам операций АЛУ. Под каждый из возможных признаков отводится один разряд РПрз.

Формирование признаков осуществляется блоком формирования состояний регистра признаков, который может входить в состав ОПБ либо реализуется в виде внешней схемы, располагаемой между операционным блоком и РПрз.

Местная память процессора (аккумулятор). Аккумулятор (Акк) – это регистр, на который возлагаются самые разнообразные функции. Так, в него предварительно загружается один из операндов, участвующих в арифметической или логической операции. В Акк может храниться результат предыдущей команды и в него же заносится результат очередной операции.

Через Акк зачастую производятся операции ввода и вывода. Строго говоря, аккумулятор в равной мере можно отнести как к АЛУ, так и к УУ, а в ВМ с регистровой архитектурой его можно рассматривать как один из регистров общего назначения.

<== предыдущая лекция | следующая лекция ==>
 | Функции и структура устройства управления
Поделиться с друзьями:


Дата добавления: 2013-12-12; Просмотров: 4224; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.027 сек.