КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Метод карт Карно для нахождения минимальной ДНФ
Таблица всех элементарных булевых функций, применяемых в записи формул Между множеством всех классов эквивалентных высказываний об элементах множества U и множеством P(U) можно установить взаимно однозначное соответствие, при котором операция дизъюнкции высказываний соответствует операции объединения множеств истинности, а конъюнкция соответствует операции пересечения. Операция отрицания соответствует операции дополнения. Следствие. Множество классов эквивалентных высказываний является булевой алгеброй. Теорема Существуют 3 булевых алгебры: 1. P(U) 2. Bn 3. Множество классов эквивалентных высказываний. Три булевых алгебры являются изоморфными, если между их элементами можно установить такое однозначное соответствие, при котором операции сохраняются.
Договоримся конъюнкцию обозначать точкой (как знак умножения в алгебре чисел). Конъюнкция выполняется раньше дизъюнкции (аналог выполнения операций сложения и умножения в алгебре чисел). Лекция 3: «Определение и способ задания булевых функций»
Булевой функцией от n аргументов называется однозначное отображение n – мерного булева куба на одномерный булев куб.
Способы задания функций 1. Табличный
gi - значение функции от данных аргументов. Порядок возрастания векторов по мере возрастания их номеров называют лексикографическим. 2. Векторный F = (g1...gn) 3. Геометрический Единичным вектором для данной функции называется тот вектор, значение функции на котором равно 1. Носителем данной функции – совокупность всех единичных векторов этой функции (Nf – носитель функции f)
На векторах, помеченных звездочкой, функция обращается в 1.
Nf = {001, 011, 100, 110} = [1,3,4,6] [] – указаны номера векторов.
3. В виде формулы. Функция f зависит от переменной xi фиктивно, если для любых двух наборов значений переменных, отличающихся только значением переменной xi, значения функции f совпадают. Будем говорить, что f зависит от переменной xi существенно, если существуют такие два набора значений, отличающихся только значением переменной xi, на которых значения функций различно. Фиктивные переменные у функции можно добавлять и исключать. Две булевы функции называются равными или равносильными, если одну можно получить из другой путем добавления и изъятия фиктивных переменных.
Строим таблицу функций при n = 1.
Все эти функции от двух аргументов мы и будем называть элементарными булевыми функциями. Основными элементарными функциями являются конъюнкция, дизъюнкция и отрицание. Элементарные булевы функции удовлетворяют всем аксиомам булевой алгебры. Суперпозиции булевых функций Ф = {ф1…фk}
F называется элементарной суперпозицией функции из множества Ф, если она получена одним из следующих способов. 1. Переименование какого-нибудь аргумента в одной из функций системы (возможно отождествление аргумента). 2. В одну из функций системы вместо любого аргумента ставится значение любой функции из этой системы.
Ф1 = {Y…xn} Фi = (x1 … фj(x1…xn) … xn)
Ф(1) – множество всех элементарных суперпозиций из системы Ф. Ф(k+1) – множество всех элементарных суперпозиций из систему Фk.
Функция g называется суперпозицией функций из системы, если $ N: g Î Фn Это означает, что g можно получить из функции системы Ф, применяя конечное число раз операцию элементарной суперпозиции. Конкретное выражение суперпозиции будем называть формулой над системой Ф. G = Fф Суперпозиция элементарных булевых функций – формула. Для удобства записи договоримся, что отрицание – самая сильная операция. Следующая – конъюнкция, а остальные – равносильны. _ _ X+Y = XY V XY _ _ X ~ Y = XY V XY __ X ® Y = X V Y _ _ X ¯ Y = X Y Лекция 4: «Дизъюнктивные нормальные формы (ДНФ).Конъюнктивные нормальные формы (КНФ)»
Введем обозначения _ Xа = X, если а = 1 и X, если а = 0
Элементарной конъюнкцией (ЭК) называется выражение вида X1a1 X2a2…Xnan
ЭК называется правильной, если все входящие в неё переменные различны. Правильная ЭК называется полной относительно данного набора переменных, если в неё входят все эти переменные. Для элементарных дизъюнкций (ЭД) – аналогичный набор определений. ЭД – выражение вида X1a1 V X2a2 V…V Xnan ДНФ – дизъюнкция разных правильных элементарных конъюнкций. __ X1 V X1X2 V X1X2X3 – ДНФ.
ДНФ называется совершенной (СДНФ), если все входящие в неё элементарные конъюнкции полны относительно данного набора переменных.
КНФ – конъюнкция разных правильных элементарных дизъюнкций. СКНФ – совершенная КНФ. У нее все ЭД полны.
Теорема. Любая булева функция, тождественно не равная нулю, представима и притом единственным образом в виде СДНФ по формуле: F(x1… xn) = V(X1a1 X2a2…Xnan)
Доказательство I. Существование 1. F = G N(f) Ì N(G) – носители функции. " a Ì N (F) Þ F(a…an) = 1 G(a) = G(a…an) = (aa…anan) V (…), где пустые скобки – оставшееся выражение. Подставив координаты, получим: 1*1V(…) = 1) Þ a Ì N (G) ÞN(F) = N(G) 2. b Î N(G) G(b..bn) = 1 – тогда, когда хотя бы одна b1a1 b2a2 …bnan = 1 Þ b1 = a …bn = an b = a Þ N(G) = N(F) Первая часть доказана.
II. Единственность Посчитаем, сколько полных ЭК может быть Всего – 2n = N (по перестановке комбинаций) Число СДНФ – 2N-1 – число различных формул СДНФ. Это число совпадает с числом различных булевых функций от n переменных (за исключением константы 0). Так как каждой функции ставится в соответствие формула СДНФ и число разных формул и разных функций одинаково, то каждой функции соответствует только одна формула. Теорема доказана полностью. Замечание. Единственность доказана при фиксированном числе аргументов n. Так как, вводя фиктивные переменные, мы будем менять вид формулы. Следствие. Любая булева функция представима формулой, в которую входит только конъюнкция, дизъюнкция и отрицание.
Принцип двойственности F*(x1…xn) – двойственная функция, _ _ _ F*(x1…xn) = F(x1…xn)
Например ____ _ _ (XY)* = XY = X V Y
Чтобы получить вектор двойственности функции при ее табличном задании, переворачиваем таблицу на 180 градусов и берем отрицание от получившейся функции. Теорема. Принцип двойственности. Если F (x1…xn) является суперпозицией функций fi (i = 1...k), то двойственная к ней функция является такой же по структуре суперпозицией, но от двойственных функций. Доказательство следует из определения двойственной функции. _ _ _ _ _ __ F*(x1..xn) = F(x1…xn) = f(f1…fk) = f*(f1…fk)
Следствие f(x1..xn) = K1 V K2 V… V Kn – СДНФ f*(x1..xn) = D1 D2 … Dn - СКНФ
Используя принцип двойственности, можно доказать следующую теорему. Любая булева функция, тождественно не равная единице представима и притом единственным образом в виде СКНФ. Доказательство получается из самого принципа двойственности и его следствий. Задача минимизации ДНФ. Определения: 1. Рангом правильной ЭК называется число разных переменных, входящих в нее. 2. Рангом ДНФ называется сумма рангов всех ЭК, входящих в ДНФ. 3. Минимальной ДНФ или Dmin для данной функции называется ДНФ, которая равна этой функции и имеет наименьший ранг. Задача минимизации ДНФ для данной функции состоит в нахлждении минимальной ДНФ. Число ДНФ при фиксированном n – конечное (n - число переменных)
Тривиальный алгоритм минимизации ДНФ состоит в следующем: 1. Выписываем все возможные ДНФ от данного числа n в порядке возрастания их рангов. 2. Последовательно сравниваем нашу функцию с каждой из этих ДНФ. Первая ДНФ, которой равна наша функция имеет минимальный ранг.
Алгоритм представления функции в виде СДНФ. 1. Выписываем носитель функции. 2. Для каждого вектора из носителя выписываем конъюнкцию соответствующих переменных. (если координата равна нулю, переменную пишем с отрицанием, если единице – без отрицания). Это и будут все полные ЭК. 3. Выписываем дизъюнкцию всех этих ЭК.
Алгоритм представления функции в виде СКНФ. 1. Выписываем носитель функции 2. Для каждого вектора из носителя выписываем дизъюнкцию соответствующих переменных. (если координата равна нулю, переменную пишем без отрицания,. если единице – с отрицанием). Это и будут все полные ЭД. 3. Выписываем конъюнкцию всех этих ЭД. Лекция 5: «Продолжение темы ДНФ»
Носитель элементарной конъюнкции ранга R будем называть интервалом ранга R. Интервал ранга R содержит 2N-R векторов. N – количество рассматриваемых векторов. Интервал – носитель элементарной конъюнкции.
Теорема Носитель дизъюнкции двух функций равен объединению носителей этих функций. Доказательство. " a Î Nf V g Þ f(a) V g(a) = 1 Þ f(a) = 1 ИЛИ g(a) = 1 Þ a Î Nf ИЛИ a Î N g ч.т.д. Носитель ДНФ является объединением интервалов. Допустимым интервалом для данной функции называется интервал, который целиком содержится в носителе этой функции. Nf = I1 V I2 V … V Ik Интервал для данной функции является максимальным, если он не содержится целиком ни в каком другом допустимом интервале. Элементарная конъюнкция, носителем которой является допустимый интервал, называется импликантой. ЭК, N – максимальный интервал – простая импликанта. Представление носителя в виде объединения максимальных интервалов будем называть покрытием носителя максимальными интервалами. Дизъюнкция всех возможных простых импликант называется сокращенной ДНФ функции. Покрытие носителя интервалами будем называть неприводимым, если ни один нельзя отбросить из правой части равенства, не нарушив это равенство. ДНФ, которая соответствует неприводимому покрытию, называется тупиковой ДНФ. Утверждение. Минимальная ДНФ содержится среди тупиковых ДНФ. Определение Максимальный интервал называется ядровым, если он содержит хотя бы одну вершину из носителя функции, которая не принадлежит больше никакому другому максимальному интервалу. Элементарная конъюнкция, соответствующая ядровому интервалу – ядровая импликанта. Объединение всех ядровых интервалов – ядро функции. Дизъюнкция всех ядровых импликант - ядровая ДНФ. Ядро функции обязательно входит в любое неприводимое покрытие.
Алгоритм получения минимальной ДНФ. 1. Выделяем носитель функции. 2. Выделяем все возможные интервалы. 3. Выписываем все простые импликанты. 4. Выделяем ядровый интервал. 5. Используя ядро функции и комбинацию неядровых интервалов, получаем все неприводимые покрытия, для каждого из которых выписываем тупиковую ДНФ. 6. Среди тупиковых ДНФ выбираем минимальную.
Выделение всех возможных интервалов. 1. Для булева куба размерности 3 интервалом ранга 1 могут быть 4 вершины, лежащие в одной грани. 2. Ранга 2 – любые 2 вершины, соединенные ребром. 3. Ранга 3 – любая отдельная вершина.
1. Нет _ 2. I1 = { 001 011} <-> П1 = x1x3 - ядровый I2 = { 011 111} <-> П2 = x2x3 Если координата вектора меняет значения, то переменная не входит I3 = { 111 110} <-> П3 = x1x2 _ I4 = { 110 100} <-> П4 = x1x3
Dсокр. = П1 V П2 V П3 V П4
Nf = I1 U I4 U I2 (U – объединение) Получили неприводимое покрытие, добавив к ядру недостающие интервалы так, чтобы все единичные вершины были задействованы. D1= П1 V П4 V П2 Nf = I1 U I4 U I3 D2= П1 V П4 V П3 Сосчитаем ранги тупиковых ДНФ R1 = 6 R2 = 6 Dmin = D1 = D2
n = 4 Карта Карно – плоскостная интерпретация 4-мерного булева куба.
Считаем, что левый край склеен с правым, а верхний – с нижним. Если таблицу Карно свернуть таким образом, то получится тор (torus - геометрическая фигура, напоминающая бублик).
Правила поиска интервалов. 1. Интервалом ранга 1 могут быть 2 соседних строки (2 соседних столбца) 2. Интервалом ранга 2 может быть вся строка, весь столбец или квадрат 2х2. 3. Интервалом ранга 3 – любые 2 соседние по горизонтали и вертикали клетки. 4. Одна отдельно взятая вершина будет интервалом ранга 4. Алгоритм – тот же самый. Лекция 6: «Метод Квайна – Мак-Клоски для нахождения минимальной ДНФ»
Этот метод удобен для нахождения минимальной ДНФ функции от любого числа переменных. Определение. Элементарная конъюнкция K1 покрывает ЭК K2, если каждая переменная, входящая в K1, входит и в K2. __ __ __ X1X3 – покрытие X1X2X3X4 Nk1 É Nk2 K2 = K1K
K – конъюнкция из других переменных. __ _ _ __ _ _ X1X3 V X1X2X3X4 = X1X3 (1 V X2X4) = X1X3 – поглощение
Склеивание двух ЭК _ Kx V Kx = K
Идея метода Квайна (алгоритм)
1. Выписываются все элементарные конъюнкции из СДНФ функции. 2. Проводятся все возможные склеивания между этими ЭК. Полученные новые ЭК сохраняются вместе со старыми. 3. Между ними снова проводим все возможные склеивания до тех пор, пока это возможно. В результате среди ЭК появятся все простые импликанты функции. 4. Проводим поглощение между всеми получившимися ЭК, то есть оставляем только те ЭК, которые не покрываются никакими другими. 5. В результате получаются только простые импликанты. Их дизъюнкция является сокращенной ДНФ. Дальше все идет в соответствии с тривиальным алгоритмом минимизации.
Дата добавления: 2013-12-11; Просмотров: 2138; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |