КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Аннуитеты: их виды и способы оценки
Аннуитет или финансовая рента — это поток однонаправленных платежей с равными интервалами между последовательными платежами, который осуществляется в течение определенного количества лет. Пример: регулярные взносы в пенсионный фонд, погашение долгосрочного кредита, регулярные выплаты процентов по ценным бумагам, платежи за пользование сданным в аренду земельным участком, квартирная плата, пенсия.
Разные виды аннуитетов характеризуются четырмя основными параметрами: 1. величина каждого отдельного платежа — член аннуитета 2. интервал времени между двумя последовательными платежами — период аннуитета 3. срок от начала аннуитета, соответствующий времени осуществленияпервого платежа, до его конца, определяемого временем осуществления последнего платежа (бывают и неограниченные по времени - вечные) 4. процентная тавка, применяемая при наращении или дисконтировании платежей
Классификация аннуитетов
Задачи: Определение будущей стоимости аннуитета и приведенное значение.
Нахождение будущей стоимости постоянного срочного аннуитета постнумерандо.
Пусть каждый платеж будет А, период N лет, начисление процентов происходит по сложной процентной ставке rc, нужно узнать будущую стоимость аннуитета.
Схема на фото на телефоне.
На первый платеж начисляется n-1 раз на второй n-2 на тот, что в последний раз проценты не будут начисляться вовсе
на первый FV1 = A* (1+rc)^(n-1) FV2 = A(1+rc)^ (n-2) Fvn = A Геометрическая прогрессия
FVc pst = сумма от i=1 to n (FVi)= A сумма i=1 to n (1+ rc) ^ (i-1)
Sn = a1(q^n -1)/(q-1)
FVc pst = A (1+rc)^n – 1 /rc
Приведенная стоимость того же аннуитета (постоянного срочного постнумерандо)
PVk = A/(1+rc)^k
PVc pst = sum k=1 to n Pvk = A* sum k=1 to n 1/(1+rc)^k
a1=q=1/(1+rc)
PV c pst = A* 1-(1+rc)^(-n) / rc
PV c pst = PV c pst * (1+rc) ^ n
стр 330-331 формулы 121 — 128
Дата добавления: 2013-12-13; Просмотров: 1739; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |