Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Общие проблемы моделирования




ПРИМЕР 8.2.

Игра в цифры с оклендской командой «А»

Никто из тех, кто связан с бейсбольной командой «А», находящейся в Окленде — городке близ Сан-Франциско, — в прошлом году не видел больше бросков, чем Джей Элвес. Дело в том, что он видел каждый бросок.

Начиная с весенних тренировок и до начала октября он видел каждый бросок и все их регистрировал. Как специалист по компьютерной статистике он провел весь сезон за пультом любимого компьютера модели «Эппл II Плюс». Между делом Элвес может сообщить вам средний за последние два года балл игроков Дуэйна Мерфи против Скотта МакГрегора, сказать, как держал удар Майк Хит против бросков с левой руки, как Дейв Лопес обходился с игроками на финише, и многое другое.

Комментаторы Лон Симмонс и Билл Кинг нашли материал превосходным и основную его часть запустили в эфир. Но тренер Билл Мартин компьютерные распечатки счел оскорблением. «У меня все вот здесь, — говаривал Билли, показывая на свою голову. — Я не нуждаюсь в этой ерунде.»

Однако цифры помогают выявить кое-что пропущенное из статистики за прошлый сезон. Джеф Берроуз, к примеру, набирал 0,220 днем и 0,304 по вечерам. Узин Гросс имел 0,321 на искусственном покрытии, но всего 0,239 на траве. На Хита (0,338) можно было ставить в позиции нападения против таких бегунов, как Лопес (0,234). В этом сезоне Элвес намерен собрать гораздо более подробную информацию. «У меня будет записано, куда был отбит каждый мячик, — говорит он, — куда попадают удары игрока на линии, куда ложатся его ауты. Это позволит определить тенденции».

Так же важно, что компьютерная информация фиксирует тенденции в игре противника, и, если тренер видит определенную картину, он в состоянии скорректировать игру защитников. «Эта работа становится увлекательной, — говорит Элвес, — когда ты действительно влияешь на игру».

Время от времени в минувшем году и тренер Мартин проявлял интерес. Так, игрок команды соперников Боб Оучинко как-то вечером сказал журналистам, что без проблем мог бы побить оклендца Регги Джексона. Мартин попросил Элвеса дать информацию — ив самом деле Регги имел 1 к 9 против Оучинко. В следующий раз Мартин уже не так сопротивлялся идее не ставить их друг против друга.

Однако чаще всего Элвес работал непосредственно на комментаторов. «Когда игры проходят в Окленде, перед Биллом и Лоном стоит по монитору, — рассказывал он, — они сразу видят средний балл игрока по подачам за сезон и его успехи. Они могут получить его показатели дома и на выезде, против конкретного подающего, в играх с конкретной командой, даже его достижения в той или другой позиции».

«В бейсболе достаточно силен человеческий элемент, — говорит Элвес. — Если вы будете напирать на цифры, погубите игру. Идея заключается в том, чтобы использовать компьютер, но не давать ему поработить мозг».

Тренер намерен использовать информацию Элвеса, в основном, для предигровой подготовки. «Игроки, обсуждая предстоящего соперника, обычно спорят, кто, к примеру, отбивает высоко, а кто низко, или где удобнее всего стоять против определенной подачи. Наши подающие будут обо всем знать заранее».

Источник: San Francisco Chromicle, March 25, 1983, pp. 77, 80. Reprinted with permission.

 

ПРОВЕРКА МОДЕЛИ НА ДОСТОВЕРНОСТЬ. После построения модели ее следует проверить на достоверность. Один из аспектов проверки заключается в определении степени соответствия модели реальному миру. Специалист по науке управления должен установить — все ли существенные компоненты реальной ситуации встроены в модель. Это, конечно, может оказаться непростым делом, если задача сложна. Проверка многих моделей управления показала, что они несовершенны, поскольку не охватывают всех релевантных переменных. Естественно, чем лучше модель отражает реальный мир, тем выше ее потенциал как средства оказания помощи руководителю в принятии хорошего решения, если предположить, что модель не слишком сложна в использовании.

Второй аспект проверки модели связан с установлением степени, в которой информация, получаемая с ее помощью, действительно помогает руководству совладать с проблемой.

Продолжим наш пример. Если бы модель для фармацевтической фирмы действительно снабдила руководство достоверной информацией о том, как часто и в каких количествах следует заказывать материалы и запасные части, ее можно было считать полезной, поскольку выходная информация позволила бы руководству принять эффективные корректирующие меры в отношении задержек поставок.

Хороший способ проверки модели заключается в опробовании ее на ситуации из прошлого. Фармацевтическая фирма могла бы приложить свою модель к разрешению проблемы запасов за последние три года. Если модель точна, решение проблемы запасов с использованием конкретных количественных и временных показателей должно выявить конкретные причины, приведшие к задержкам. Руководство могло бы также определить, смогла ли полученная на модели информация (если ее удалось бы получить) помочь в разрешении производственных трудностей и ликвидации задержек.

ПРИМЕНЕНИЕ МОДЕЛИ. После проверки на достоверность модель готова к использованию. Как говорит Шеннон, ни одну модель науки управления «нельзя считать успешно выстроенной, пока она не принята, не понята и не применена на практике». Это кажется очевидным, но зачастую оказывается одним из самых тревожных моментов построения модели. Согласно одному обследованию отделов, анализирующих операции на корпоративном уровне, лишь около 60% моделей науки управления были использованы в полной или почти полной мере. В других обследованиях также установлено, что финансовые руководители американских корпораций и западноевропейские управляющие маркетингом недостаточно широко используют модели для принятия решений. Основная причина недоиспользования моделей руководителями, которые должны их применять, возможно заключается в том, что они их опасаются или не понимают.

Если модели науки управления создаются специалистами штабных служб (а так обычно и бывает), линейные руководители, для которых они предназначены, должны принимать участие в постановке задачи и установлении требований по информации, получаемой из модели. Согласно исследованиям, когда это имеет место, применение моделей увеличивается на 50%. Кроме того, таких руководителей следует научить использовать модели, объяснив среди прочего, как модель функционирует, каковы ее потенциальные возможности и ограничения.

ОБНОВЛЕНИЕ МОДЕЛИ. Даже если применение модели оказалось успешным, почти наверняка она потребует обновления. Руководство может обнаружить, что форма выходных данных не ясна или желательны дополнительные данные. Если цели организации изменяются таким образом, что это влияет на критерии принятия решений, модель необходимо соответствующим образом модифицировать. Аналогичным образом, изменение во внешнем окружении — например, появление новых потребителей, поставщиков или технологии — может обесценить допущения и исходную информацию, на которых основывалась модель при построении.

 

 

Как все средства и методы, модели науки управления могут привести к ошибкам. Эффективность модели может быть снижена действием ряда потенциальных погрешностей. Наиболее часто встречающиеся — недостоверные исходные допущения, ограниченные возможности получения нужной информации, страхи пользователя, слабое использование на практике, чрезмерно высокая стоимость.

НЕДОСТОВЕРНЫЕ ИСХОДНЫЕ ДОПУЩЕНИЯ. Любая модель опирается на некоторые исходные допущения или предпосылки. Это могут быть поддающиеся оценке предпосылки, например, что расходы на рабочую силу в следующие шесть месяцев составят 200 тыс. долл. Такие предположения можно объективно проверить и просчитать. Вероятность того, что они точны, будет высока. Некоторые предпосылки не поддаются оценке и не могут быть объективно проверены. Предположение о росте сбыта в будущем году на 10% — пример допущения, не поддающегося проверке. Никто не знает наверняка, произойдет ли это действительно. Поскольку такие предпосылки являются основой модели, точность последней зависит от точности предпосылок. Модель нельзя использовать для прогнозирования, например, потребности в запасах, если неточны прогнозы сбыта на предстоящий период.

В дополнение к допущениям по поводу компонентов модели, руководитель формулирует предпосылки относительно взаимосвязей внутри нее. К примеру, модель, предназначенная помочь в решении о том, сколько галлонов краски разных типов следует производить, должна, вероятно, включать допущение относительно зависимости между продажной ценой и прибылью, а также стоимостью материалов и рабочей силы. Точность модели зависит также от точности этих взаимосвязей.

ИНФОРМАЦИОННЫЕ ОГРАНИЧЕНИЯ. Основная причина недостоверности предпосылок и других затруднений — это ограниченные возможности в получении нужной информации, которые влияют и на построение, и на использование моделей. Точность модели определяется точностью информации по проблеме. Если ситуация исключительно сложна, специалист по науке управления может быть не в состоянии получить информацию по всем релевантным факторам или встроить ее в модель. Если внешняя среда подвижна, информацию о ней следует обновлять быстро, но это может быть нереализуемым или непрактичным.

Иногда при построении модели могут быть проигнорированы существенные аспекты, поскольку они не поддаются измерению. Например, модель определения эффективности новой технологии будет некорректной, если в нее встроена только информация о снижении издержек в соответствии с увеличением специализации. Как показано на примере угольной шахты в гл. 3, трудно предсказуемое и измеряемое воздействие психологических установок рабочих также отражается на производительности. Если рабочим не нравится новый процесс, то рост издержек по причине прогулов, высокая текучесть кадров и заторы на производственных линиях могут помешать приросту производительности.

В общем, построение модели наиболее затруднительно в условиях неопределенности. Когда необходимая информация настолько неопределенна, что ее трудно получить, исходя из критерия объективности, руководителю, возможно, целесообразнее положиться на свой опыт, способность к суждению, интуицию и помощь консультантов.

СТРАХ ПОЛЬЗОВАТЕЛЕЙ. Модель нельзя считать эффективной, если ею не пользуются. Основная причина неиспользования модели заключается в том, что руководители, которым она предназначена, могут не вполне понимать получаемые с помощью модели результаты и потому боятся ее применять. Опрос журналом «Форчун» вице-президентов по производству из 500 фирм подтвердил, что основное препятствие для использования моделей науки управления вице-президентом — это недостаток у них знаний в этой области.

Группа исследователей пришла к выводу, что для борьбы с этим возможным страхом специалистам по количественным методам анализа следует значительно больше своего времени уделять ознакомлению руководителей с возможностями и порядком использования моделей. Руководители должны быть подготовлены к применению моделей, а высшему руководству следует подчеркивать, насколько значительно успех организации зависит от моделей и как они повышают способность руководителей эффективно планировать и контролировать работу организации.

СЛАБОЕ ИСПОЛЬЗОВАНИЕ НА ПРАКТИКЕ. Согласно ряду исследований уровень методов моделирования в рамках науки управления превосходит уровень использования моделей. Как указывалось выше, одна из причин такого положения дел — страх. Другие причины — это недостаток знаний и сопротивление переменам. Данная проблема подкрепляет желательность того, чтобы на стадии построения модели штабные специалисты привлекали к этому делу пользователей. Когда люди имеют возможность обсудить и лучше понять вопрос, метод или предполагаемое изменение, их сопротивление обычно снижается.

ЧРЕЗМЕРНАЯ СТОИМОСТЬ. Выгоды от использования модели, как и других методов управления, должны с избытком оправдывать ее стоимость. При установлении издержек на моделирование руководству следует учитывать затраты времени руководителей высшего и низшего уровней на построение модели и сбор информации, расходы и время на обучение, стоимость обработки и хранения информации.

 




Поделиться с друзьями:


Дата добавления: 2013-12-13; Просмотров: 412; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.