КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Стандарты цифровой транковой связи
Посылка запроса. При организации вызова, абонентская радиостанция посылает запрос базовой станции на одном из каналов. Если базовая станция не отвечает, то радиостанция переходит на следующей канал (из числа запрограммированных в радиостанции) и опять делает посылку запроса и т. д. до перебора всех каналов. Если ни один из каналов не доступен, то звучит сигнал «занято» и радиостанция опять переходит в режим приема (сканирования). Прием вызова. В системах SmarTrunk II реализация «транкового» доступа возложена на абонентские радиостанции. Абонентские радиостанции непрерывно сканируют запрограммированные каналы в ожидании вызова. При появлении вызывного сигнала на одном из каналов, радиостанция останавливает сканирование и обрабатывает цифровую посылку базовой станции. Если вызов адресован данной радиостанции, то он обрабатывается (звучит вызывной сигнал), если нет, то станция снова переходит в режим сканирования. ПРИНЦИП РАБОТЫ. Пример Ответ базовой станции может появиться только на свободном канале. В ответной посылке содержится результат проверки легальности абонента и возможности осуществления запроса данного типа (по описанию в базе данных контроллера). Если абонентская радиостанция получила ответ от базы и он положителен (т. е. абоненту разрешен доступ в систему), то данный канал занимается. После чего контроллер формирует запрос вызываемому абоненту (группе, телефонному абоненту). Если параметры вызываемого абонента также соответствуют описанию в базе данных, то в эфир передается цифровая посылка с идентификационным номером требуемого абонента (группы). Если вызываемая радиостанция отвечает, то организуется сеанс связи. Как видно из приведенного описания, принцип работы системы довольно прост, несмотря на это позволяет создавать системы с достаточно широкими возможностями.
Транкинговые системы могут работать в следующих режимах: - персональной (индивидуальной) радиотелефонной связи; - групповой (диспетчерский) режим связи. Групповой режим предназначен для обеспечения одновременной связи между всеми участниками группы. Разговор между вызывающим абонентом и лицом, к которому он обращается, слышат все члены группы; - связи с автоматической телефонной и учрежденческой телефонной станциями; - непосредственной связи между радиостанциями. Мобильные радиостанции могут связаться между собой непосредственно в обход ретранслятора. Это удобно в тех случаях, когда подвижные абоненты находятся в радиусе действия своих радиостанций, но вне зоны обслуживания ретранслятора. Принцип работы системы иллюстрируется рис.7.11. Для случая 4-канальной БС темные области первых четырех линий на рис.7.11 указывают на занятость ретранслятора, а темные области самой нижней свидетельствуют об одновременной занятости всех каналов БС, когда абонент не может получить немедленный доступ ни к одному из каналов. Такая ситуация называется блокировкой каналов.
Рисунок 7.11 – Блокировка
Если бы каналы были сформированы не на основе транкинга, то только один из них был бы доступен абоненту, как это происходит в обычной системе радиосвязи. При автоматическом доступе к нескольким каналам на основе транкинга, вероятность быть заблокированным или получить отказ значительно уменьшается. Средняя нагрузка в транкинговой системе обычно варьируется в пределах от десятков до сотен абонентов. Факторами, определяющими нагрузочные возможности системы, являются режимы работы (индивидуальная или диспетчерская связь), частота обращения абонентов и показатель уровня обслуживания, исходя из чего, определяется необходимое число ретрансляторов. Качество обслуживания характеризуется вероятностью Р получения доступа к свободному каналу с первой попытки. Одним из главных признаков транкинговой системы является возможность группирования абонентов по общим интересам. По этой причине трафик в основном замыкается внутри транкинговых сетей (до 90 %), а выход большинства абонентов на ТфОП предполагается в редких случаях. Предоставление разного набора услуг зависит от приоритетов, установленных внутри системы. Таким образом, современные транкинговые системы, как правило, обеспечивают различные типы вызова (групповой, индивидуальный, широковещательный), допускают приоритетные вызовы, имеют доступ к ТфОП, обеспечивают возможность передачи данных и режим прямой связи между абонентскими станциями (без использования канала БС). Особенность транкинговых систем - предусмотрена возможность обеспечения связи между абонентами системы без выхода на ретрансляторы. В системах, ориентированных на организацию сетей связи общего пользования (например, сотовых), такая возможность отсутствует. При развертывании транкинговых систем связи общего пользования (ТССОП) и в процессе их эксплуатации операторы должны руководствоваться комплексом документов, технических требований, порядком и правилами, регламентирующими работу транкинговых сетей связи (рис. 7.12). Для транкинговых систем связи в Российской Федерации выделены частоты в диапазонах: 160 (147-170); 400 (401- 406, 412 - 417, 422 - 427); 800 (815 - 820, 860 - 865) Мгц. Следует иметь в виду, что транкинговые системы связи, имеющие выход в ТфОП, должны рассчитываться из средней нагрузки на канал не менее 0,25 Эрл при вероятности блокирования вызова менее 0,05. В настоящее время на рынке средств подвижной связи помимо отечественных систем сухопутной подвижной связи (АЛТАЙ, ВОЛЕМОТ) в большом количестве представлено оборудование различных зарубежных производителей, которое позволяет развернуть сети транкинговой радиосвязи радиальной, радиально-зоновой либо квазисотовой структур, работающих в различных диапазонах частот и предоставляющих потребителям определенный набор услуг.
Рисунок 7.12 - Технические требования, регламентирующие работу транкинговых сетей связи
Транкинговые системы, реализующие разные протоколы транкинга (стандарты), имеют разные возможности. Развитие мирового рынка систем транкинговой радиосвязи сегодня характеризуется широким внедрением цифровых технологий. Ведущие мировые производители оборудования транкинговых систем объявляют о переходе к цифровым стандартам радиосвязи, предусматривая при этом либо выпуск принципиально нового оборудования, либо адаптацию аналоговых систем к цифровой связи. К наиболее популярным, заслужившим международное признание стандартам цифровой транкинговой радиосвязи, на основе которых во многих странах развернуты системы связи, относятся:
Все эти стандарты отвечают современным требованиям к системам транкинговой радиосвязи. Они позволяют создавать различные конфигурации сетей связи: от простейших локальных однозоновых систем до сложных многозоновых систем регионального или национального уровня. Системы на основе данных стандартов обеспечивают различные режимы передачи речи (индивидуальная связь, групповая связь, широковещательный вызов и т. п.) и данных (коммутируемые пакеты, передача данных с коммутацией цепей, короткие сообщения и т. п.) и возможность организации связи с различными системами по стандартным интерфейсам (с цифровой сетью с интеграцией услуг, с телефонной сетью общего пользования, с учрежденческими АТС и т. д.). В системах радиосвязи указанных стандартов применяются современные способы речепреобразования, совмещенные с эффективными методами помехоустойчивого кодирования информации. Все документы с описанием стандарта TETRA формируют так называемую «принудительную» часть, обязательную для выполнения в европейских странах. Исключение составляет лишь Интерфейс Центрального управления сетью (CMNI – Central Network Management Interface), который относится к рекомендательным документам. Описание стандарта состоит из ряда документов, описывающих разные части системы. Среди многочисленных требований и описаний отметим основные: 1. Air Interface V+D (AI) [«эфирный» интерфейс голоса и данных] – интерфейс между радиостанциями и базовым оборудованием. Обеспечивает совместимость оконечных устройств (радиостанций) различных изготовителей. 2. Terminal Equipment Interface (TEI) [интерфейс терминальных устройств] – интерфейс между радиостанциями и устройствами передачи данных. 3. Inter System Interface (ISI) [межсистемный интерфейс] – интерфейс между сетями TETRA. Обеспечивает возможность объединения систем различных производителей. 4. Line Station Interface (LSI) [интерфейс линейных устройств]– интерфейс подключения проводных линейных устройств (диспетчерских пультов). 5. Network Management Interface (NMI) [интерфейс управления сетью] – интерфейс центрального управления системой. 6. Gateways to Public Network [шлюзы для внешних сетей] – интерфейс для подключения к внешним сетям (УАТС, ГТС, ISDN и т. д.). 7. Direct Mode Operation (DMO) [работа в «прямом» режиме] – связь между радиостанциями вне зоны действия сети (рис.5.34). Примечательно то, что стандартизованы только внешние интерфейсы, в то время как внутренние реализации коммутаторов, управляющих устройств, контроллеров не стандартизированы. С одной стороны это позволяет поддерживать «открытость» стандарта, а с другой – оставляет возможность изготовителям предлагать собственные, наиболее эффективные, разработки и решения.
Рисунок 7.13 – К описанию стандартов
Таким образом – суть транковой связи состоит в том, что абонент не закрепляется за определенным каналом, а имеет равный доступ ко всем каналам в системе. А какой использовать для сеанса связи, решает специальное управляющее оборудование. При запросе абонента система автоматически предоставляет абоненту свободный канал. Система EDACS. Одним из первых стандартов цифровой транковой радиосвязи был стандарт EDACS (Enhanced Digital Access Communication System), разработанный фирмой Ericsson (Швеция). Первоначально он предусматривал только аналоговую передачу речи, однако позднее была разработана специальная цифровая модификация системы EDACS Aegis. Цифровые системы EDACS выпускались на диапазоны частот 138-174 МГц, 403-423, 450-470 МГц и 806-870 МГц с разносом частот 30; 25; и 12,5 кГц. В системах EDACS применяется частотное разделение каналов связи с использованием высокоскоростного (9600 бит/с) выделенного канала управления, который предназначается для обмена цифровой информацией между радиостанциями и устройствами управления работой системы. Это обеспечивает высокую оперативность связи в системе (время установления канала связи в однозоновой системе не превышает 0,25 с). Скорость передачи информации в рабочем канале также соответствует 9600 бит/с. Речевое кодирование в системе производится путем компрессии импульсно-кодовой последовательности со скоростью 64 Кбит/с, полученной с помощью аналого-цифрового преобразования сигнала с тактовой частотой 8 кГц и разрядностью 8 бит. Алгоритм компрессии, реализующий метод адаптивного многоуровневого кодирования (разработка фирмы Ericsson), обеспечивает динамическую адаптацию к индивидуальным характеристикам речи абонента и формирует низкоскоростную цифровую последовательность, которая подвергается помехоустойчивому кодированию, доводящему скорость цифрового потока до 9,2 Кбит/с. Далее сформированная последовательность делится на пакеты, в каждый из которых включаются сигналы синхронизации и управления. Результирующая последовательность передается в канал связи со скоростью 9600 бит/с. Системы стандарта EDACS обеспечивают возможность работы радиосредств как в цифровом, так и в аналоговом режиме, что позволяет пользователям на определенном этапе использовать старый парк технических средств радиосвязи. Высокая отказоустойчивость обеспечивается реализацией в аппаратуре системы EDACS распределенной архитектуры и заложенным принципом распределенной обработки данных. Базовая станция сети связи сохраняет работоспособность даже в случае отказа всех ретрансляторов, кроме одного. Последний работоспособный ретранслятор в этом случае в исходном состоянии работает как ретранслятор канала управления, при поступлении вызовов обрабатывает их, назначая свой собственный частотный канал, после чего переходит в режим ретранслятора рабочего канала. При выходе из строя контроллера базовой станции система переходит в аварийный режим, при котором теряются некоторые функции сети, однако сохраняется частичная работоспособность (ретрансляторы работают автономно). В системе EDACS возможно сквозное шифрование информации, однако в связи с закрытым протоколом приходится применять либо стандартный алгоритм защиты, предлагаемый фирмой Ericsson, либо согласовывать с ней возможность использования собственных программно-аппаратных модулей, реализующих оригинальные алгоритмы, которые должны быть совместимы с системным протоколом EDACS. Система APCO 25. Стандарт APCO 25 разработан Ассоциацией официальных представителей служб связи органов общественной безопасности (Association of Public safety Communications Officials-international), которая объединяет пользователей систем связи, работающих в службах общественной безопасности. При проектировании все спецификации стандарта разделениы на два этапа реализации, которые были обозначены как Фаза I и Фаза II. Основополагающими принципами разработки стандарта APCO 25, сформулированными его разработчиками, были требования:
Системная архитектура стандарта поддерживает как транкинговые, так и обычные (конвенциональные) системы радиосвязи, в которых абоненты взаимодействуют между собой либо в режиме непосредственной связи, либо через ретранслятор. Основным функциональным блоком системы стандарта APCO 25 является радиоподсистема, определяемая как сеть связи, которая строится на основе одной или нескольких базовых станций. При этом каждая базовая станция должна поддерживать Общий радиоинтерфейс (CAI - Common Radio Interface) и другие стандартизованные интерфейсы (межсистемный, с ТФОП, с портом передачи данных, с сетью передачи данных и сетевым управлением). Стандарт APCO 25 предусматривает возможность работы в любом из стандартных диапазонов частот, используемых системами подвижной радиосвязи: 138-174, 406-512 или 746-869 МГц. Основной метод доступа к каналам связи - частотный (МДЧР), однако, по заявке фирмы Ericsson в Фазу II включена возможность использования в системах стандарта APCO 25 множественного доступа с временным разделением каналов (МДВР). В Фазе I стандартный шаг сетки частот составляет 12,5 кГц, в Фазе II - 6,25 кГц. При этом при полосе 12,5 кГц осуществляется четырехпозиционная частотная модуляция по методу C4FM со скоростью 4800 символов в секунду, а при полосе 6,25 кГц - четырехпозиционная фазовая модуляция со сглаживанием фазы по методу CQPSK. Сочетание указанных методов модуляции позволяет использовать на разных фазах одинаковые приемники, дополняемые различными усилителями мощности (для Фазы I - простые усилители с высоким КПД, для Фазы II - усилители с высокой линейностью и ограниченной шириной излучаемого спектра). При этом демодулятор может осуществлять обработку сигналов по любому из методов. Речевая информация в радиоканале передается кадрами по 180 мс, сгруппированными по 2 кадра. Для речевого кодирования в стандарте используется кодек IMBE (Improved MultiBand Excitation), который применяется также в системе спутниковой связи Inmarsat. Скорость кодирования - 4400 бит/с. После помехоустойчивого кодирования речевой информации скорость информационного потока увеличивается до 7200 бит/с, а после формирования речевых кадров путем добавления служебной информации - до 9600 бит/с. Заложенная в стандарте APCO 25 система идентификации абонентов позволяет адресовать в одной сети не менее 2 миллионов радиостанций и до 65 тысяч групп. При этом задержка при установлении канала связи в подсистеме в соответствии с функциональными и техническими требованиями к стандарту APCO 25 не должна превышать 500 мс (в режиме прямой связи - 250 мс, при связи через ретранслятор - 350 мс). Системы APCO 25 в соответствии с функциональными и техническими требованиями должны обеспечивать 4 уровня криптозащиты. Используется поточный метод шифрования информации с применением нелинейных алгоритмов формирования шифрующей последовательности. При использовании специального режима OTAR (Over-the-air-re-keying) ключи шифрования могут передаваться по радиоканалу. В связи с тем, что основной метод доступа к каналам связи в APCO - МДИР, на текущий момент нет терминалов, которые обеспечивали бы работу абонента в режиме полного дуплекса. Несмотря на то, что APCO является международной организацией, представительства которой находятся в Канаде, Австралии, Карибском регионе, основную роль в продвижении этого стандарта играют американские фирмы, поддерживаемые правительством США. К числу участников общественного сектора Ассоциации относятся ФБР, Министерство обороны США, Федеральный комитет связи, полиции ряда штатов США, Секретная служба и многие другие государственные организации. В качестве производителей оборудования стандарта APCO 25 уже заявили себя такие ведущие фирмы, как Motorola (основной разработчик стандарта), E.F.Johnson, Transcrypt, Stanlite Electronics и др. Фирма Motorola уже представила свою первую систему, основанную на стандарте APCO 25, имеющую название ASTRO. Наибольший интерес к данному стандарту проявляют специалисты МВД России. Пилотная сеть (пока не транкинговой, а конвенциональной радиосвязи) на основе двух базовых станций была развернута МВД России в Москве в 2001 г. В 2003 г. в Санкт-Петербурге к 300-летию города была развернута сеть диспетчерской радиосвязи на 300 абонентов в интересах различных силовых структур. Система Tetrapol. Стандарт Tetrapol описывает цифровую транкинговую систему радиосвязи с выделенным каналом управления и частотным методом разделения каналов связи. Стандарт позволяет создавать как однозоновые, так и многозоновые сети связи различной конфигурации, обеспечивая также возможность прямой связи между подвижными абонентами без использования инфраструктуры сети и ретрансляции сигналов на фиксированных каналах. Системы связи стандарта Tetrapol имеют возможность работы в диапазоне частот от 70 до 520 МГц, который в соответствии со стандартом определяется как совокупность двух поддиапазонов: ниже 150 МГц (VHF) и выше 150 МГц (UHF). Большая часть радиоинтерфейсов для систем этих поддиапазонов является общей, различие заключается в использовании различных методов помехоустойчивого кодирования и кодового перемежения. В поддиапазоне UHF рекомендуемый дуплексный разнос каналов приема и передачи составляет 10 МГц. Частотный разнос между соседними каналами связи может составлять 12,5 или 10 кГц. В дальнейшем предполагается переход к разносу между каналами в 6,25 кГц. В системах стандарта Tetrapol поддерживается ширина полосы до 5 МГц, что обеспечивает возможность использования в сети 400 (при разносе 12,5 кГц) или 500 (при разносе 10 кГц) радиоканалов. При этом в каждой зоне может использоваться от 1 до 24 каналов. Скорость передачи информации в канале связи составляет 8000 бит/с. Передача информации организуется по кадрам длиной 160 бит и длительностью 20 мс. Кадры объединяются в суперкадры длительностью 4 с (200 кадров). Информация подвергается сложной обработке, включающей сверточное кодирование, перемежение, скремблирование, дифференциальное кодирование и окончательное форматирование кадра. В системах стандарта Tetrapol используется GMSK модуляция с BT=0,25. Для преобразования речи в стандарте применяется кодек с алгоритмом речепреобразования, использующим метод анализа через синтез типа RPCELP (Regular Pulse Code Excited Linear Prediction). Скорость преобразования составляет 6000 бит/с. В стандарте определяются три основных режима связи: транкинговый, режим прямой связи и режим ретрансляции. В сетевом режиме (или режиме транкинговой связи) взаимодействие абонентов осуществляется с помощью базовых станций (БС), которые распределяют каналы связи между абонентами. При этом сигналы управления передаются на отдельном, специально выделенном для каждой БС частотном канале. В режиме прямой связи обмен информацией между подвижными абонентами производится напрямую без участия базовой станции. В режиме ретрансляции связь между абонентами осуществляется через ретранслятор, который имеет фиксированные каналы передачи и приема информации. В системах стандарта Tetrapol поддерживается 2 основных вида информационного обмена: передача речи и передача данных. Службы речевой связи позволяют осуществлять следующие виды вызовов: широковещательный вызов, вызов установки открытого канала, групповой вызов, индивидуальный вызов, множественный вызов с использованием списка абонентов, аварийный вызов. Службы передачи данных предоставляют ряд услуг прикладного уровня, поддерживаемых заложенными в радиотерминалах функциями, таких как межабонентский обмен сообщениями в соответствии с протоколом Х.400, доступ к централизованным базам данных, доступ к фиксированным сетям в соответствии с протоколом TCP/IP, передача факсимильных сообщений, пересылка файлов, передача сигналов персонального вызова, передача коротких сообщений, передача статусных вызовов, поддержка режима передачи получаемых с помощью приемников GPS данных о местоположении объекта, передача видеоизображений. В стандарте Tetrapol предусмотрены стандартные сетевые процедуры, обеспечивающие современный уровень обслуживания абонентов: динамическая перегруппировка, аутентификация абонента, роуминг, приоритетный вызов, управление передатчиком абонента, управление «профилем» абонента (дистанционное изменение параметров абонентского радиотерминала, заложенных в него при программировании) и др. Системы стандарта Tetrapol предоставляют пользователям ряд дополнительных услуг, которые, наряду с предоставлением сервисных услуг, позволяют эффективно реализовывать специфические сети связи служб общественной безопасности и правоохранительных органов. К числу таких услуг относятся приоритет доступа (предоставление предпочтительного доступа в систему при перегрузке каналов радиосвязи); приоритетный вызов (присвоение вызовов в соответствии со схемой приоритетов); приоритетное сканирование (предоставление пользователю, принадлежащему к нескольким группам, возможности получения вызовов от абонента любой из групп); вызов, санкционированный диспетчером (режим, при котором вызовы поступают только с санкции диспетчера сети связи); переадресация вызова (безусловное перенаправление вызова другому абоненту или переадресация в случае занятости вызываемого абонента); подключение к вызову (включение режима, при котором один пользователь, взаимодействующий с другим, может сделать участником соединения третьего абонента); избирательное прослушивание (перехват поступающего вызова без влияния на работу других абонентов); дистанционное прослушивание (дистанционное включение абонентской радиостанции на передачу для прослушивания обстановки у абонента); идентификация вызывающей стороны (определение и отображение на терминале вызываемого абонента идентификатора вызывающей стороны); «двойное наблюдение» (возможность абонентского радиотерминала, работающего в сетевом режиме, получать также сообщения и в режиме прямой связи) и многие другие. В связи с тем, что с самого начала стандарт Tetrapol был ориентирован на обеспечение требований правоохранительных органов, в нем предусмотрены различные механизмы обеспечения безопасности связи, направленные на предотвращение таких угроз, как несанкционированный доступ в систему, прослушивание ведущихся переговоров, создание преднамеренных помех, анализ трафика конкретных абонентов и т. п. К числу таких механизмов относятся:
Системы стандарта Tetrapol широко используются во Франции. Видимо, не без поддержки правительством отечественного производителя, кроме сети связи Rubis национальной жандармерии, системы Tetrapol эксплуатируются французской полицией (система Acropolе) и службой железных дорог (система Iris). Стандарт Tetrapol пользуется популярностью и в некоторых других странах Европы. На основе данного стандарта развернуты сети связи полиции Мадрида и Каталонии, подразделений безопасности Чешской Республики, службы аэропорта во Франкфурте. Специальная сеть связи Matracom 9600 развертывается в интересах Берлинского транспортного предприятия. Радиостанции сети связи будут установлены на более, чем 2000 автобусах предприятия. Кроме радиосвязи, в сети задействуется функция определения местоположения транспортных средств. В 1997 г. фирма Matra Communications выиграла тендер по созданию системы цифровой радиосвязи для королевской тайландской полиции. Контракт является частью заказа по модернизации полицейской радиосети, которая объединит 70 полицейских участков. Предполагается задействование самых современных возможностей системы, включая доступ к централизованной базе данных, электронную почту, сквозное шифрование информации, местоопределение. Имеются также сведения о развертывании нескольких систем в двух других странах юго-восточной Азии, а также в интересах полиции Мехико. В нашей стране системы стандарта Tetrapol пока не используются. В настоящее время ФАПСИ предполагает развертывание в России опытного района транкинговой радиосвязи данного стандарта. Система iDEN. С точки зрения статуса стандарта iDEN можно охарактеризовать как корпоративный стандарт с открытой архитектурой. Это означает, что компания Motorola, сохраняя за собой все права по модификации системного протокола, предоставляет вместе с тем лицензии на производство компонентов системы различным производителям. Данный стандарт разрабатывался для реализации интегрированных систем, обеспечивающих все виды подвижной радиосвязи: диспетчерской связи, мобильной телефонной связи, передачи текстовых сообщений и пакетов данных. Технология iDEN ориентирована на создание корпоративных сетей крупных организаций или коммерческих систем, предоставляющих услуги как организациям, так и частным лицам. При реализации диспетчерских сетей подвижной радиосвязи iDEN предоставляет возможности группового и индивидуального вызова, а также режима сигнализации вызова, при котором в случае недоступности абонента вызов запоминается в системе, а затем передается абоненту, когда тот становится доступным. Число возможных групп в iDEN составляет 65535. Время установления связи при групповом вызове в полудуплексном режиме не превышает 0,5 с. Системы iDEN предоставляют возможности организации телефонной связи по любым направлениям: мобильный абонент – мобильный абонент, мобильный абонент – абонент ТФОП. Телефонная связь полностью дуплексная. В системе предусмотрена возможность голосовой почты. Абоненты систем iDEN имеют возможность передавать и получать на свои терминалы текстовые сообщения, а также передавать данные (в коммутационном режиме со скоростью 9,6 Кбит/с, а в пакетном – до 32 Кбит/с), что обеспечивает возможность организации факсимильной связи и электронной почты, а также взаимодействия с фиксированными сетями, в частности с Internet. Пакетный режим передачи данных поддерживает протокол TCP/IP. Система iDEN выполнена на базе технологии МДВР. В каждом частотном канале шириной 25 кГц передается 6 речевых каналов. Это достигается путем разбиения кадра длительностью 90 мс на временные интервалы по 15 мс, в каждом из которых передается информация своего канала. Для речевого кодирования используется кодек, работающий по алгоритму типа VSELP. Скорость передачи информации в одном канале составляет 7,2 Кбит/с, а суммарная скорость цифрового потока в радиоканале (за счет использования помехоустойчивого кодирования и добавления управляющей информации) достигает 64 Кбит/с. Столь высокой скорости передачи информации в полосе 25 кГц удается достичь за счет применения 16-позиционной квадратурной модуляции M16-QAM. В стандарте используется стандартный для Америки и Азии частотный диапазон 805-821/855-866 МГц. IDEN имеет самую высокую спектральную эффективность среди рассматриваемых стандартов цифровой транкинговой связи, он позволяет разместить в 1 МГц до 240 информационных каналов. Вместе с тем, размеры зон покрытия базовых станций (ячеек) в системах iDEN меньше, чем в системах других стандартов, что объясняется малой мощностью абонентских терминалов (0,6 Вт – для портативных станций и 3 Вт – для мобильных). Архитектуре системы iDEN присущи черты, характерные как для транкинговых, так и для сотовых систем, что подчеркивает ориентацию iDEN на обслуживание большого количества абонентов и интенсивный трафик. При создании коммерческих систем для обслуживания различных организаций или предприятий в системе может быть создано до 10000 виртуальных сетей, в каждой из которых может быть до 65500 абонентов, объединенных при необходимости в 255 групп. При этом каждая из групп абонентов может использовать всю зону связи, обеспечиваемую данной системой. Первая коммерческая система, развернутая в 1994 г. компанией NEXTEL, в настоящее время является общенациональной и насчитывает около 5500 сайтов и 2,7 млн. абонентов. В США имеется другая сеть, оператором которой является компания Southern Co. Сети iDEN развернуты также в Канаде, Бразилии, Мексике, Колумбии, Аргентине, Японии, Сингапуре, Китае, Израиле и других странах. Общее число абонентов iDEN в мире на сегодня превышает 3 млн. человек. В России системы iDEN не развернуты и нет сведений о разработках проектов сетей данного стандарта. Система TETRA. TETRA представляет собой стандарт цифровой транкинговой радиосвязи, состоящий из ряда спецификаций, разработанных Европейским институтом телекоммуникационных стандартов ETSI (European Telecommunications Standards Institute). Стандарт TETRA создавался как единый общеевропейский цифровой стандарт. TETRA - открытый стандарт, т. е. предполагается, что оборудование различных производителей будет совместимо. Доступ к спецификациям TETRA свободен для всех заинтересованных сторон, вступивших в ассоциацию «Меморандум о взаимопонимании и содействии стандарту TETRA» (MoU TETRA). Ассоциация, в которую в конце 2001 г. входило более 80 участников, объединяет разработчиков, производителей, испытательные лаборатории и пользователей различных стран. Стандарт TETRA состоит из двух частей: TETRA V+D (TETRA Voice+Data) - стандарта на интегрированную систему передачи речи и данных, и TETRA PDO (TETRA Packet Data Optimized) - стандарта, описывающего специальный вариант транкинговой системы, ориентированный только на передачу данных. В системах стандарта TETRA V+D [1] используется метод многостанционного доступа с временным разделением (МДВР) каналов связи. На одной физической частоте может быть организовано до 4 независимых информационных каналов. В системах стандарта TETRA используется относительная фазовая модуляция типа p/4-DQPSK (Differrential Quadrum Phase Shift Keying). Скорость модуляции - 36 Кбит/с. В стандарт TETRA входят спецификации беспроводного интерфейса, интерфейсов между сетью TETRA и цифровой сетью с интеграцией услуг (ISDN), телефонной сетью общего пользования, сетью передачи данных, учрежденческими АТС и т. п. В стандарт включено описание всех основных и дополнительных услуг, предоставляемых сетями TETRA. Специфицированы также интерфейсы локального и внешнего централизованного управления сетью. В странах Европы за службами безопасности закреплены диапазоны 380-385/390-395 МГц, а для коммерческих организаций предусмотрены диапазоны 410-430/450-470 МГц. В Азии для систем TETRA используется диапазон 806-870 МГц. Системы стандарта TETRA могут функционировать в следующих режимах:
В режиме транкинговой связи обслуживаемая территория перекрывается зонами действия базовых приемопередающих станций. Стандарт TETRA позволяет как использовать в системах только распределенный канал управления, так и организовывать его сочетание с выделенным частотным каналом управления. При работе сети с распределенным каналом управления служебная информация передается либо только в контрольном кадре мультикадра (одном из 18), либо еще в специально выделенном временном канале (одном из 4-х каналов, организуемых на одной частоте). В дополнение к распределенному сеть связи может использовать выделенный частотный канал управления, специально предназначенный для обмена служебной информацией (при этом реализуются максимальные услуги связи). В режиме с открытым каналом группа пользователей имеет возможность устанавливать соединение «один пункт - несколько пунктов» без какой-либо установочной процедуры. Любой абонент, присоединившись к группе, может в любой момент использовать этот канал. В режиме с открытым каналом радиостанции работают в двухчастотном симплексе. В режиме непосредственной (прямой) связи (Direct Mode) между терминалами без передачи сигналов через базовые приемопередающие станции устанавливаются двух- и многоточечные соединения по радиоканалам, не связанным с каналом управления сетью. Режим «прямой» связи обеспечивает функционирование радиостанций как в зоне действия транковой системы, так и вне ее. При нахождении абонентов в пределах «радиовидимости» работа в режиме «прямой» связи позволяет снизить нагрузку на систему (так как базовая станция не участвует в передаче сигналов). Режим называется DMO (работа в «прямом» режиме) – связь между радиостанциями вне зоны действия сети Возможность автономной работы позволяет также обеспечивать связью абонентов при полном повреждении базового оборудования или при проведении мероприятий на выезде. Дальность связи в этом случае зависит только от физических принципов распространения радиоволн. Для увеличения зон обслуживания в стандарте TETRA предусматривается возможность использования абонентских радиостанций в качестве ретрансляторов - режим «мобильного ретранслятора» (режимы определены интерфейсом DMO). Наличие этих режимов появилось во многом благодаря пожеланиям служб общественной безопасности. В системах стандарта TETRA мобильные станции могут работать в т. н. режиме «двойного наблюдения» («Dual Watch»), при котором обеспечивается прием сообщений от абонентов, работающих как в режиме транкинговой, так и прямой связи.
Рисунок 7.14 – Режимы работы
Более подробно материал представлен на практическом занятии 7.2 «Система TETRA».
Дата добавления: 2013-12-13; Просмотров: 1203; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |